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Abstract
The generation of feasible adversarial examples is
necessary for properly assessing models that work
in constrained feature space. However, it remains a
challenging task to enforce constraints into attacks
that were designed for computer vision. We pro-
pose a unified framework to generate feasible ad-
versarial examples that satisfy given domain con-
straints. Our framework can handle both linear and
non-linear constraints. We instantiate our frame-
work into two algorithms: a gradient-based attack
that introduces constraints in the loss function to
maximize, and a multi-objective search algorithm
that aims for misclassification, perturbation mini-
mization, and constraint satisfaction. We show that
our approach is effective in four different domains,
with a success rate of up to 100%, where state-
of-the-art attacks fail to generate a single feasible
example. In addition to adversarial retraining, we
propose to introduce engineered non-convex con-
straints to improve model adversarial robustness.
We demonstrate that this new defense is as effec-
tive as adversarial retraining. Our framework forms
the starting point for research on constrained adver-
sarial attacks and provides relevant baselines and
datasets that future research can exploit.

1 Introduction
Research on adversarial examples initially focused on image
recognition [Dalvi et al., 2004; Szegedy et al., 2013] but has,
since then, demonstrated that the adversarial threat concerns
many domains including cybersecurity [Pierazzi et al., 2020;
Sheatsley et al., 2020], natural language processing [Alzantot
et al., 2018b], software security [Yefet et al., 2020], cyber-
physical systems [Li et al., 2020], finance [Ghamizi et al.,
2020], manufacturing [Mode and Hoque, 2020], and more.

A peculiarity of these domains is that the ML model is in-
tegrated in a larger software system that takes as input do-
main objects (e.g. financial transaction, malware, network
traffic). Therefore altering an original example in any direc-
tion may result in an example that is infeasible in the real
world. This contrasts with images that generally remain valid
after slight pixel alterations. Hence, a successful adversarial

example should not only fool the model and keep a minimal
distance to the original example, but also satisfy the inherent
domain constraints.

As a result, generic adversarial attacks that were designed
for images – and are unaware of constraints – equally fail to
produce feasible adversarial examples in constrained domains
[Ghamizi et al., 2020; Tian et al., 2020]. A blind application
of these attacks would distort model robustness assessment
and prevent the study of proper defense mechanisms.

Problem-space attacks are algorithms that directly manip-
ulate problem objects (e.g. malware code [Aghakhani et al.,
2020; Pierazzi et al., 2020], audio files [Du et al., 2020], wire-
less signal [Sadeghi and Larsson, 2019]) to produce adver-
sarial examples. While these approaches guarantee by con-
struction that they generate feasible examples, they require
the specification of domain-specific transformations [Pierazzi
et al., 2020]. Their application, therefore, remains confined
to the particular domain they were designed for. Additionally,
the manipulation and validation of problem objects are com-
putationally more complex than working with feature vectors.

An alternative to problem-space attacks is feature-space
attacks that enforce the satisfaction of the domain con-
straints. Some approaches for constrained feature space
attacks modify generic gradient-based attacks to account
for constraints [Sheatsley et al., 2020; Tian et al., 2020;
Erdemir et al., 2021] but are limited to a strict subset of
the constraints that occurs in real-world applications (read
more in Appendix A of our extended version1, where we
discuss the related work thoroughly). Other approaches
tailored to a specific domain manage to produce feasible
examples [Chernikova and Oprea, 2019; Li et al., 2020;
Ghamizi et al., 2020] but would require drastic modifications
throughout all their components to be transferred to other do-
mains. To this date, there is a lack of generic attacks for ro-
bustness assessment of domain-specific models and a lack of
cross-domain evaluation of defense mechanisms.

In this paper, we propose a unified framework2 for con-
strained feature-space attacks that applies to different do-
mains without tuning and ensures the production of feasi-
ble examples. Based on our review of the literature and our
analysis of the covered application domains, we propose a

1Extended version: https://arxiv.org/abs/2112.01156.
2https://github.com/serval-uni-lu/moeva2-ijcai22-replication
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generic constraint language that enables the definition of (lin-
ear and non-linear) relationships between features. We, then,
automatically translate these constraints into two attack algo-
rithms that we propose. The first is Constrained Projected
Gradient Descent (C-PGD) – a white-box alteration of PGD
that incorporates differentiable constraints as a penalty in the
loss function that PGD aims to maximize, and post-processes
the generated examples to account for non-differentiable con-
straints. The second is Multi-Objective EVolutionary Adver-
sarial Attack (MoEvA2) – a grey-box multi-objective search
approach that treats misclassification, perturbation distance,
and constraints satisfaction as three objectives to optimize.
The ultimate advantage of our framework is that it requires
the end-user only to specify what domain constraints exist
over the features. The user can then apply any of our two al-
gorithms to generate feasible examples for the target domain.

We have conducted a large empirical study to evaluate the
utility of our framework. Our study involves four datasets
from finance and cybersecurity, and two types of classifica-
tion models (neural networks and random forests). Our re-
sults demonstrate that our framework successfully crafts fea-
sible adversarial examples. Specifically, MoEvA2 does so
with a success rate of up to 100%, whereas C-PGD succeeded
on the finance dataset only (with a success rate of 9.85%).

In turn, we investigate strategies to improve model robust-
ness against feasible adversarial examples. We show that ad-
versarial retraining on feasible examples can reduce the suc-
cess rate of C-PGD down to 2.70% and the success rate of
the all-powerful MoEvA2 down to 85.20% and 0.80% on the
finance and cybersecurity datasets, respectively.

2 Problem Formulation
We formulate below the problem for binary classification. We
generalize to multi-class classification problems in Appendix
B.

2.1 Constraint Language
Let us consider a classification problem defined over an in-
put space Z and a binary set Y = {0, 1}. Each input z ∈ Z
is an object of the considered application domain (e.g. mal-
ware [Aghakhani et al., 2020], network data [Chernikova and
Oprea, 2019], financial transactions [Ghamizi et al., 2020]).
We assume the existence of a feature mapping function ϕ :
Z −→ X ⊆ Rn that maps Z to an n-dimensional feature
space X over the feature set F = {f1, f2, ..fn}. For simplic-
ity, we assume X to be normalized such that X ⊆ [0, 1]n.
That is, for all z ∈ Z, ϕ(z) is an m-sized feature vector
x = (x1 . . . xn) where xi ∈ [0, 1] and is the j-th feature.
Each object z respects some natural conditions in order to be
valid. In the feature space, these conditions translate into a
set of constraints over the feature values, which we denote by
Ω. By construction, any feature vector x generated from a
real-world object z satisfies all constraints ω ∈ Ω.

Based on our review of the literature, we have designed
a constraint language to capture and generalize the types of
feature constraints that occur in the surveyed domains. Our
framework allows the definition of constraint formulae ac-

cording to the following grammar:

ω := ω1 ∧ ω2 | ω1 ∨ ω2 | ψ1 � ψ2 | f ∈ {ψ1 . . . ψk}
ψ := c | f | ψ1 ⊕ ψ2 | xi

where f ∈ F , c is a constant real value, ω, ω1, ω2 are con-
straint formulae, �∈ {<,≤,=, 6=,≥, >}, ψ,ψ1, . . . , ψk are
numeric expressions, ⊕ ∈ {+,−, ∗, /}, and xi is the value of
the i-th feature of the original input x.

One can observe from the above that our formalism cap-
tures, in particular, feature boundaries (e.g. f > 0) and nu-
merical relationships between features (e.g. f1/f2 < f3) –
two forms of constraints that have been extensively used in
the literature [Chernikova and Oprea, 2019; Ghamizi et al.,
2020; Tian et al., 2020; Li et al., 2020].

2.2 Threat Model and Attack Objective
Let a functionH : X → Y be a binary classifier and function
h : X → R be a single output predictor that predicts a con-
tinuous probability score. Given a classification threshold t,
we can induce H from h with, H(x) = I[[h(x)≥t]], where I[[.]]

is an indicator function, that is, I outputs 1 if the probability
score is equal or above the threshold and 0 otherwise.

In our threat model, we assume that the attacker has knowl-
edge of h and its parameters, as well as of F and Ω. We also
assume that the attacker can directly modify a subset of the
feature vector x = (x1 . . . xm), with m < n. We refer to this
subset as the set of mutable features. The attacker can only
feed the example to the system if this example satisfies Ω.

Given an original example x, the attack objective is to
generate an adversarial example x+ δ such that H(x+ δ) 6=
H(x), δ < ε for a maximal perturbation threshold ε under a
given p-norm, and x + δ ∈ XΩ. While domain constraints
guarantee that an example is feasible, (e.g. total credit amount
must be equal to the monthly payment times the duration in
months), we limit the maximum perturbation to produce im-
perceptible adversarial examples. By convention, one may
prefer p = ∞ for continuous features, p = 1 for binary fea-
tures and p = 2 for a combination of continuous and binary
features. We refer to such examples x + δ as a constrained
adversarial example. We also name constrained adversarial
attack algorithms that aim to produce the above optimal con-
strained adversarial example. We propose two such attacks.

3 Constrained Projected Gradient Descent
Past research has shown that multi-step gradient attacks like
PGD are among the strongest attacks [Kurakin et al., 2016].
PGD adds iteratively a perturbation δ that follows the sign of
the gradient ∇ with respect to the current adversary xt of the
input x. That is, at iteration t+ 1 it produces the input

xt+1 = Πx+δ(x
t + αsgn(∇xl(θh, xt, y))) (1)

where θh the parameters of our predictor h, Π is a clip func-
tion ensuring that x + δ remains bounded in a sphere around
x of a size ε using a norm p, and ∇xl is the gradient of loss
function tailored to our task, computed over the set of mutable
features. For instance, we can use cross-entropy losses with a
mask for classification tasks. We compute the gradient using
the first-order approximation of the loss function around x.



Constraints formulae Penalty function
ω1 ∧ ω2 ω1 + ω2

ω1 ∨ ω2 min(ω1, ω2)
ψ ∈ Ψ = {ψ1, . . . ψk} min({ψi ∈ Ψ :| ψ − ψi |})
ψ1 ≤ ψ2 max(0, ψ1 − ψ2)
ψ1 < ψ2 max(0, ψ1 − ψ2 + τ)
ψ1 = ψ2 | ψ1 − ψ2 |

Table 1: From constraint formulae to penalty functions. τ is an
infinitesimal value.

However, as our experiments reveal (see Table 2 and Sec-
tion 6), a straight application of PGD does not manage to
generate any example that satisfies Ω. This raises the need to
equip PGD with the means of handling domain constraints.

An out-of-the-box solution that we have experimented is
to pair PGD with a mathematical programming solver, i.e.
Gurobi [Gurobi Optimization, LLC, 2022]. Once PGD man-
aged to generate an adversarial example (not satisfying the
constraint), we invoke the solver to find a solution to the set
of constraints close to the example that PGD generated (and
under a perturbation sphere of ε size). Unfortunately, this so-
lution does not work out either because the updated examples
do not fool the classifier anymore or the solver simply cannot
find an optimal solution given the perturbation size.

In face of this failure, we conclude that this gradient-based
attack cannot generate constrained adversarial examples if we
do not revisit its fundamentals in light of the new attack ob-
jective. We, therefore, propose to develop a new method that
considers the satisfaction of constraints as an integral part of
the perturbation computation.

Concretely, we define a penalty function that represents
how far an example x is from satisfying the constraints. More
precisely, we express each constraint ωi as a penalty function
penalty(x, ωi) over x such that x satisfies ωi if and only if
penalty(x, ωi) <= 0. Table 1 shows how each constraint
formula (as defined in our constraint language) translated into
such a function. The global distance to constraint satisfaction
is, then, the sum of the non-negative individual penalty func-
tions, that is, penalty(x,Ω) =

∑
ωi∈Ω penalty(x, ωi).

The principle of our new attack, C-PGD, is to integrate the
constraint penalty function as a negative term in the loss that
PGD aims to maximize. Hence, given an input x, C-PGD
looks for the perturbation δ defined as

arg max
δ:‖δ‖p≤ε

{l(h(x+ δ), y)−
∑
ωi∈Ω

penalty(x+ δ, ωi)} (2)

The challenge in solving (2) is the general non-convexity of
penalty(x,Ω). To recover tractability, we propose to approx-
imate (2) by a convex restriction of penalty(x,Ω) to the sub-
set of the convex penalty functions. Under this restriction,
all the penalty functions used in (2) are convex, and we can
derive the first-order Taylor expansion of the loss function
and use it at each iterative step to guide C-PGD. Accordingly,
C-PGD produces examples iteratively as follows:

xt+1 = Πx+δ(R(xt + αsgn(∇xt l(h(xt), y)

−
∑
φi

∇xtpenalty(xt, φi))))
(3)

with x0 = x, and R a repair function. At each iteration t, R
updates the features of the example to repair the non-convex
constraints whose penalty functions are not back-propagated
with the gradient∇xt l (if any).

4 Multi-Objective Generation of Constrained
Adversarial Examples

As an alternative to C-PGD, we propose MoEvA2, a multi-
objective optimization algorithm whose fitness function is
driven by the attack objective described in Section 2.

4.1 Objective Function
We express the generation of constrained adversarial exam-
ples as a multi-objective optimization problem that reflects
three requirements: misclassification of the example, maxi-
mal distance to the original example, and satisfaction of the
domain constraints. By convention, we express these three
objectives as a minimization problem.

The first objective of a constrained attack is to cause mis-
classification by the model. When provided an input x, the bi-
nary classifier H outputs h(x), the prediction probability that
x lies in class 1. If h(x) is above the classification threshold
t, the model classifies x as 1; otherwise as 0. Without knowl-
edge of t, we consider h(x) to be the distance of x to class
0. By minimising h(x), we increase the likelihood that the
H misclassifies the example irrespective of t. Hence, the first
objective that MoEvA2 minimizes is g1(x) ≡ h(x).

The second objective is to minimize perturbation between
the original example and the adversarial example, to limit the
perceptibility of the crafted perturbations. We use the conven-
tional Lp distance to measure this perturbation. The second
objective is g2(x) ≡ Lp(x̂0 − x0).

The third objective is to satisfy the domain constraints.
Here, we reuse the the penalty functions that we defined in
Table 1. The third and last objective function is thus

g3(x) ≡
∑
ωi∈Ω

penalty(x, ωi).

Accordingly, the constrained adversarial attack objective
translates into MoEvA2 into a three-objective function to
minimize with three validity conditions, that is:

minimise g1(x) ≡ h(x) s.t. g1(x) < t

minimise g2(x) ≡ Lp(x̂0 − x0) g2(x) ≤ ε

minimise g3(x) ≡
∑
ωi

penalty(x, ωi) g3(x) = 0

and this three-objective function also forms the fitness func-
tion that MoEvA2 uses to assess candidate solutions.

4.2 Genetic Algorithm
We instantiate MoEvA2 as a multi-objective genetic algo-
rithm, namely based on R-NSGA-III [Vesikar et al., 2018].
We describe below how we specify the different components
of this algorithm. It is noteworthy, however, that our gen-
eral approach is not bound to R-NSGA-III. In particular, the
three-objective function described above can give rise to other
search-based approaches for constrained adversarial attacks.



Population initialization. The algorithm first initializes a
population P of L solutions. Here, an individual represents a
particular example that MoEvA2 has produced through suc-
cessive alterations of a given original example x. We specify
that the initial population comprises L copies of x. The rea-
son we do so is that we noticed, through preliminary exper-
iments, that this initialization was more effective than using
random examples. This is because the original input inher-
ently satisfies the constraints, which makes it easier to alter it
into adversarial inputs that satisfy the constraints as well.

Population evolution. MoEvA2 generates new individu-
als with two-point binary crossover. MoEvA2 selects the par-
ents with a binary tournament over the Pareto dominance, and
mutates the mutable features of the children using polyno-
mial mutation. MoEvA2 uses non-dominance sorting based
on our three objective functions to determine which individu-
als it keeps for the next generation. We provide the details of
the algorithms in Appendix B.

5 Experimental Settings
5.1 Datasets and Constraints
Because images are devoid of constraints and fall outside the
scope of our framework, we evaluate C-PGD and MoEvA2 on
four datasets coming from inherently constrained domains.
These datasets bear different sizes, features, and types (and
number) of constraints. We evaluate both neural networks
(NN) and random forest (RF) classifiers. More details about
datasets and models in Appendix C.

LCLD is inspired by the Lending Club Loan Data [Kag-
gle, 2019]. Therein, examples are credit requests that can
be accepted or rejected. We trained a neural network and
a random forest that both reach an AUROC score of 0.72.
Through our analysis of the dataset, we have identified con-
straints that include 94 boundary conditions, 19 immutable
features, and 10 feature relationship constraints (3 linear, 7
non-linear). For example,the installment (I), the loan amount
(L), the interest rate (R) and the term (T) are linked by the
relation I = L ∗R(1 +R)T /((1 +R)T − 1).

CTU-13 is a feature-engineered version of CTU-13, pro-
posed by [Chernikova and Oprea, 2019]. It includes a mix of
legit and botnet traffic flows from the CTU University cam-
pus. We trained a neural network and a random forest to clas-
sify legit and botnet traffic, which both achieve an AUROC
score of 0.99. We identified constraints that include 324 im-
mutable features and 360 feature relationship constraints (326
linear, 34 non-linear). For example, the maximum packet size
for TCP/UDP ports should be 1500 bytes.

Malware comprises features extracted from a collection of
benign and malware PE files [Aghakhani et al., 2020]. We
use a standard random forest with an AUC of 0.99. We have
identified constraints that include 88 immutable features and
7 feature relationship constraints (4 linear, 3 non-linear). For
example, the sum of binary features set to 1 that describe
API imports should be less than the value of features api nb,
which represents the total number of imports on the PE file.

URL comes from [Hannousse and Yahiouche, 2021] and
contains a set of legitimate or phishing URLs. The random
forest we use has an AUROC of 0.97. We have identified

Dataset Attack C M C&M

NN

LCLD

PGD 0.00 22.20 0.00
PGD + SAT 2.43 0.00 0.00
C-PGD 61.68 22.03 9.85
MoEvA2 100.00 99.90 97.48

CTU-13

PGD 0.00 100.00 0.00
PGD + SAT 100.00 0.00 0.00
C-PGD 0.00 17.57 0.00
MoEvA2 100.00 100.00 100.00

RF

LCLD Papernot 0.00 11.86 0.00
MoEvA2 99.98 61.84 41.51

CTU-13 Papernot 79.36 13.02 0.0
MoEvA2 100.00 7.62 5.41

Malware Papernot 0.00 51.99 0.00
MoEvA2 100.00 100.00 39.30

URL Papernot 84.23 11.25 8.50
MoEvA2 100.00 32.06 31.89

Table 2: Success rate (C&M) of the attacks on the neural network
(NN) and random forest (RF) models, in % of the original exam-
ples. M is the success rate disregarding constraint satisfaction; C is
the ratio of original examples where the attack found examples that
satisfy the constraints and are within the perturbation bound.

14 relation constraints between the URL features, including
7 linear constraints (e.g. hostname length is at most equal to
URL length) and 7 are if-then-else constraints.

5.2 Experimental Protocol and Parameters
In all datasets, a typical attack would be interested in fooling
the model to classify a malicious class (rejected credit, botnet,
malware, and phishing URL) into a target class (accepted,
legit, benign, and legit URL). By convention, we denote by 1
the malicious class and by 0 the target class.

We evaluate the success rate of the attacks on the trained
models using, as original examples, a subset of the test data
from class 1. In LCLD we take 4000 randomly selected ex-
amples from the candidates, to limit computation cost while
maintaining confidence in the generalization of the results.
For CTU-13, Malware, and URL, we use respectively all 389,
1308, and 1129 test examples that are classified in class 1.

Since all datasets comprise binary, integer, and continuous
features, we use the L2 distance to measure the perturbation
between the original examples and the generated examples.

We detail and justify in Appendices C and D the attack
parameters including perturbation threshold ε, the number of
generations and population size for the genetic algorithm at-
tack, and the number of iterations for the gradient attack.

6 Experimental Results
6.1 Attack Success Rate
Table 2 shows the success rate of PGD, PGD + SAT, C-PGD,
and MoEvA2 on the two neural networks that we have trained
on LCLD and CTU-13; and the success rate of the Paper-
not attack and MoEvA2 on the random forests that we have
trained on each dataset. More precisely, we use the extension



of the original Papernot attack [Papernot et al., 2016] that
[Ghamizi et al., 2020] proposed to make this attack applica-
ble to random forests.

PGD and PGD + SAT fail to generate any constrained ad-
versarial examples. The problem of PGD is that it fails to
satisfy the domain constraints. While the use of a SAT solver
fixes this issue, the resulting examples are classified correctly.
C-PGD can create LCLD examples that satisfy the constraints
and examples that the model misclassifies, yielding an actual
success rate of 9.85%. On the CTU-13 dataset, however, the
attack fails to generate any constrained adversarial examples.
The reason is that CTU-13 comprises 360 constraints, which
translates into as many new terms in the function of which C-
PGD backpropagates through. As each function contributes
with a diverse, non-co-linear, or even opposed gradients, this
ultimately hinders the attack. Similar phenomena have been
observed in multi-label [Song et al., 2018] and multi-task
models [Ghamizi et al., 2021]. By contrast, MoEvA2, which
enables a global exploration of the search space, is successful
for 97.48% and 100% of the original examples, respectively.

MoEvA2 also manages to create feasible adversarial exam-
ples on the random forest models, with a success rate rang-
ing from 5.41% to 41.51%. This indicates that our attack
remains effective on such ensemble models, including with
other datasets. Like PGD, the Papernot attack – unaware
of constraints – cannot produce a single feasible example on
LCLD, CTU-13, and Malware, whereas it has a low success
rate (8.50%) on URL compared to MoEvA2 (31.89%).

Conclusion: While adversarial attacks unaware of do-
main constraints fail, incorporating constraint knowl-
edge as an attack objective enables the successful gen-
eration of constrained adversarial examples.

6.2 Adversarial Retraining
We, next, evaluate if adversarial retraining is an effective
means of reducing the effectiveness of constrained attacks.

We start from our models trained on the original training
set. We generate constrained adversarial examples (using ei-
ther C-PGD or MoEvA2) from original training examples that
each model correctly classifies in class 1. To enable a fair
comparison of both methods, for the LCLD (NN), we use
only the original examples for which C-PGD and MoEvA2
could both generate a successful adversarial example. In all
other cases, we do not apply this restriction, since MoEvA2
is the only technique that is both applicable and successful.
While MoEvA2 returns a set of constrained examples, we
only select the individual that maximizes the confidence of
the model in its (wrong) classification, similarly to C-PGD
that maximizes the model loss.

Regarding the perturbation budget, we follow established
standards [Carlini et al., 2019] and provide the attack with an
ε budget 4 times larger than the defense.

Table 3 (middle rows) shows the results for the neural
networks, and Table 4 (second row) for the random forests.
Overall, we observe that adversarial retraining remains an ef-
fective defense against constrained attacks. For instance, on
LCLD (NN) adversarial retraining using MoEva2 drops the
success rate of C-PGD from 9.85% to 2.70%, and its own

Defense Attack LCLD CTU-13

None C-PGD 9.85 0.00
None MoEvA2 97.48 100.00

C-PGD Adv. retraining * C-PGD 8.78 NA
C-PGD Adv. retraining * MoEvA2 94.90 NA

MoEvA2 Adv. retraining * C-PGD 2.70 NA
MoEvA2 Adv. retraining * MoEvA2 85.20 0.8

Constraints augment. C-PGD 0.00 NA
Constraints augment. MoEvA2 80.43 0.00

MoEvA2 Adv. retrain. † MoEvA2 82.00 NA
Combined defenses † MoEvA2 77.43 NA

Table 3: Success rate of C-PGD and MoEvA2 after adversarial re-
training and constraint augmentation (on neural networks). For a
fair comparison, the model denoted by the same symbols (* or †)
are trained with the same number of adversarial examples, gener-
ated from the same original samples.

Defense LCLD CTU-13 Malware URL

None 41.51 5.41 39.30 31.89
Adv. retraining 3.90 4.67 37.69 22.14
Cons. augment. 19.73 6.63 28.52 20.99
Combined 0.77 4.67 28.98 15.94

Table 4: Success rate of MoEvA2 on the random forest models.

success rate from 97.48% to 85.20%. The fact that MoEvA2
still works suggests, however, that the large search space that
this search algorithm explores preserves its effectiveness. By
contrast, on CTU-13 (NN), we observe that the success rate
of MoEvA2 drops from 100% to 0.8% after adversarial re-
training with the same attack.

Conclusion: Adversarial retraining remains an effective
defense against constrained adversarial attacks.

6.3 Defending With Engineered Constraints
We hypothesize that an alternative way to improve robustness
against constrained attacks is to augment Ω with a set of en-
gineered constraints – in particular, non-convex constraints.
To verify this, we propose a systematic method to add engi-
neered constraints, and we evaluate the effectiveness of this
novel defense mechanism.

To define new constraints, we first augment the original
data with new features engineered from existing features. Let
f̂ denote the mean value of some feature of interest f over
the training set. Given a pair of feature (f1, f2), we engineer
a binary feature fe as

fe(x) ≡ (f̂1 ≤ x1)⊕ (f̂2 ≤ x2)

where xi is the value of fi in x and⊕ denotes the exclusive or
(XOR) binary operator. The comparison of the value of the
input x for a particular features fi with the mean f̂i allows
us to handle non-binary features while maintaining a uniform
distribution of value across the training dataset. We use the
XOR operator to generate the new feature as this operator is



not differentiable. We, then, introduce a new constraint that
the value of fe should remain equal to its original definition.
That is, we add the constraint

ωe ≡ (fe(x) = (f̂1 ≤ x1)⊕ (f̂2 ≤ x2))

The original examples respects these new constraints by con-
struction. In other words, for an adversarial attack to be suc-
cessful, the attack should modify fe if the modifications it
applied to f1 and f2 would imply a change in the value of fe.

To avoid combinatorial explosion, we add constraints only
on pairs of the most important mutable features. We measure
importance with the approximation of Shapley value [Shriku-
mar et al., 2017], an established explainability method. In
the end, we consider a number M of pairs such that M =
arg maxx

(
x
2

)
< N

4 where N is the total number of features.
As a preliminary sanity check, we verified that constraint

augmentation does not penalize clean performance and con-
firmed that the augmented models keep similar performance.

To evaluate this constraint augmentation defense, we use
the same protocol as before, except that the models are trained
on the augmented set of features. That is, we assume that the
attacker has knowledge of the added features and constraints.

We show the results in Table 3 and 4 (third row). Con-
strained augmentation nullifies the low success rate of C-PGD
on LCLD – the gradient-based attack becomes unable to sat-
isfy the constraints. Our defense also decreases significantly
the success rate of MoEva2 in all cases except the CTU-13
random forest. For instance, it drops from 97.48% to 80.43%
for LCLD NN, and from 100% to 0% on CTU-13 NN.

We assess the effect of constraint augmentation and adver-
sarial retraining more finely and show, in Figure 1, the suc-
cess rate of MoEvA2 on the LCLD neural network over the
number of generations. Compared to the undefended model,
both constrained augmentation and adversarial retraining (us-
ing MoEvA2) lower the asymptotic success rate. Moreover,
the growth of success rate is much steeper for the undefended
model. For instance, MoEvA2 needs ten times more gener-
ations to reach the same success rate of 84% against the de-
fended models than against the undefended model (100 gen-
erations versus 12 generations). Adversarial retraining using
C-PGD is less effective: while it reduces the success rate in
the earlier generations, its benefits diminishes as the MoEvA2
attack runs for more generations.

Conclusion: Constraint augmentation is an effective al-
ternative defense against constrained adversarial attacks.
The benefits of both defense mechanisms against Mo-
EvA2 are achieved as soon as the earliest generations
and persist throughout the attack process.

6.4 Combining Defenses
We investigate whether the combination of constraint aug-
mentation with adversarial retraining yields better results. A
positive answer would indicate that constraint augmentation
and adversarial retraining have complementary benefits.

We add to the models the same engineered constraints as
we did previously. We also perform adversarial retraining on
the augmented models, using all adversarial examples that
MoEvA managed to generate on the training set. Then, we
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Figure 1: Success rate of MoEvA2 against the original LCLD neural
network and the defended counterparts, over the generations.

attack the defended models using MoEvA applied to the test
set. For a fair comparison with adversarial retraining, we also
apply this defense without constraint augmentation, using the
same number of examples. We do not experiment with C-
PGD, which was already ineffective when only one defense
was used. Neither do we consider the datasets for which one
defense was enough to fully protect the model.

Tables 3 and 4 (last rows) present the results. On LCLD
(NN), the combined defenses drops the attack success rate
from 97.48% (on a defenseless model) to 77.23%, which bet-
ter than adversarial retraining (82.00%) and constraint aug-
mentation (80.43%) applied separately. On the RFs, the
combination either offers additional reductions in attack suc-
cess rate compared to the best individual defense (LCLD and
URL) or has negligible effects (CTU-13 and Malware).

Conclusion: Constraint augmentation and adversarial
training are two effective defense strategies that have
complementary effects. Compared to their separate ap-
plication, the combination can decrease the attack suc-
cess rate by up to 5%.

7 Conclusion
We proposed the first generic framework for adversarial at-
tacks under domain-specific constraints. We instantiated our
framework with two methods: one gradient-based method
that extends PGD with multi-loss gradient descent, and one
that relies on multi-objective search. We evaluated our meth-
ods on four datasets and two types of models. We demon-
strated their unique capability to generate constrained adver-
sarial examples. In addition to adversarial retraining, we pro-
posed and investigated a novel defense strategy that intro-
duces engineered non-convex constraints. This strategy is
as effective as adversarial retraining. We hope that our ap-
proach, algorithms, and datasets will be the starting point of
further endeavor towards studying feasible adversarial exam-
ples in real-world domains that are inherently constrained.



A Related work
A.1 Genetic algorithm for adversarial attacks
Genetic algorithms are considered as black-box attack can-
didates by researchers in many domains. In the category of
natural language processing, there exist several attacks us-
ing genetic algorithms as a search method. [Alzantot et al.,
2018b] were the first to use GA to replace words in a sentence
with their synonyms to generate adversarial examples. that
preserve semantics and syntax. Synonyms are assumed to
preserve the syntax and semantics, therefore they do not use
any constraint evaluation like in MoEvA2. These attacks are
specific to text and can not be used in other domains. At the
same time, the scope of MoEvA2 does not cover adversarial
attacks in text as it considers explicit constraints between fea-
tures. In parallel, [Alzantot et al., 2018a] had demonstrated
the first kind of adversarial attack against a speech recogni-
tion model. Similarly, they use a genetic algorithm to add
noise to only the least significant bits of a random subset of
audio samples. However, there was no study to show if a
person could detect the fact that the audio file was tampered.
The other adaptions of GA appear in [Xu et al., 2016] where
the authors modify malicious PDF samples to evade binary
malware classifiers. Similarly, in [Kucuk and Yan, 2020] the
authors used a genetic algorithm to evade three multi-class
Portable Executable (PE) malware classifiers on targeted at-
tacks. For both PDF and PE attacks, the authors had to check
the validity of the generated examples in problem space by
passing them through a checker. The advantage of MoEvA2
is that it ensures feasibility by including a constraint evalua-
tion process. This avoids the need to reconstruct samples in
the problem space and evaluate them for feasibility.

A.2 Adversarial attacks for constrained domains
In the constrained adversarial attacks literature, most of the
studies upgrade the present attacks to support some con-
straints and only a few propose new algorithms tailored to
each domain specifically. One of these novel methods for
crafting adversarial attacks that respect domain constraints
was proposed by [Kulynych et al., 2018]. The authors use
a graphical framework where each edge represents a feasible
transformation, with its weight representing the transforma-
tion cost. The nodes of the graph are the transformed exam-
ples. Despite the idea being innovative, the downside of this
method is that it works only with linear models, and it comes
with high computation cost. [Chernikova and Oprea, 2019]
builds an iterative gradient-based adversarial attack that con-
siders groups of feature families. At each iteration, the feature
of maximum gradient and its family are chosen for modifica-
tion. The modifications that do not respect the constraints
are updated until they enter a feasible region. The imple-
mentation provided by the authors is closely related to the
botnet domain, therefore it can not be re-used in new do-
mains. [Li et al., 2020] considers simple linear constraints
for cyber-physical systems. They generate practical examples
using a best-effort search algorithm. However, the solution is
not scalable to practical applications that have more complex
non-linear constraints. Our unified framework overcomes the
barriers of domain adaptation by providing an easy language

to define both linear and non-linear constraints.
Other researchers have preferred to upgrade existing at-

tacks to support constraints. [Sheatsley et al., 2020] extends
the traditional JSMA algorithm to support constraints resolu-
tion. They use the concept of a primary feature in a group
of interdependent features. Meanwhile, Tian et al. [Tian et
al., 2020] introduced C-IFGSM an updated version of FGSM
that considers feature correlations. They embed the corre-
lations into a constraint matrix which is used to calculate
the Hadamard product with the sign of the gradient in or-
der to determine the direction and magnitude of the update.
[Teuffenbach et al., 2020] crafted constrained adversarial ex-
amples for NIDS by extending the optimization function in
Carlini and Wagner attack. They group flow-based features
by their modification feasibility and assign weights to each
group based on the level of difficulty of the modification. The
authors in [Erdemir et al., 2021] introduce non-uniform per-
turbation in PGD attacks to enable adversarial retraining with
more realistic examples. They use Pearson’s correlation co-
efficient, Shapley values, and masking to build a matrix that
constrains the direction and magnitude of change similarly
to [Tian et al., 2020]. All the existing attacks above are up-
graded to handle simple and general constraints, but do not
deal with more complex domain-specific constraints. There-
fore, the samples they generate are more restricted but not
totally feasible.

[Ghamizi et al., 2020] proposed a black-box, GA approach
to generate constrained adversarial examples for an indus-
trial credit scoring system. This work is the closest to one
of the attacks we propose (MoEvA2). Contrary to them, for
MoEvA2 we are using a multi-objective function that is not
case-specific and needs neither parameter tuning nor domain
expert knowledge to work. Our framework is more general
and can be applied to multiple use cases without fine-tuning.

B Problem formulation and methods
B.1 Extension to multi-class classification tasks
To simplify, we limited the definition of the problem and its
solutions to binary classifiers. We propose an extension of
the problem to multi-class classification tasks and show how
MoEvA2 can be extended to handle these use cases. We con-
sider a n-dimensional feature space X over the feature set
F = {f1, f2, ..fn}. For simplicity, we assume X to be nor-
malized such that X ⊆ [0, 1]n. Let Y = {1, 2, ...,K} be the
set of labels of a K-class classification task. Let a function
H : X → Y be a K-class classifier and hk : X → [0, 1] be a
single output predictor that predicts a continuous probability
score of x to belong to class k. We can induce H from h with
H(x) = arg maxk({hk(x)|k ∈ Y}). For multi-class classi-
fication tasks, one must consider the targeted and untargeted
scenarios.

Given an original example x classified as c and a XΩ the
subset of X that satisfies the set Ω of domain constraints the
attack objective of

1. a targeted attack towards class ŷ 6= y is to generate an
adversarial example x+δ such thatH(x+δ) = ŷ, δ < ε

2. an untargeted attack is to generate an adversarial exam-
ple x+ δ such that H(x+ δ) 6= y, δ < ε



for a maximal perturbation threshold ε under a given p −
norm, and x+ δ ∈ XΩ.

These 2 types of attack can be solved by updating the ob-
jective functions of MoEvA2. One can update the objective
functiong1(x) as follows:

1. targeted attack towards class ŷ 6= y: g1(x) ≡ 1− hŷ(x)
(as we aim to maximize the probability hŷ(x), we use
1− hŷ(x) to obtain a minimization towards 0 problem)

2. untargeted attack: g1(x) ≡ hy(x)

while the objective functions g2 (perturbation) and g3 (con-
straints penalty) remain unchanged.

B.2 MoEvA2 Algorithm

Algorithm 1: Generation process of MoEvA2
Input: x0, an original example;
G objectives[g1, g2, g3], the 3 objective functions;
Ngen, a number of generations;
L, a population size;
C, a number of children;
Output: A population P of adversarial examples

minimizing the G objectives functions;
1 P ← init(x0, L) ;
2 for j = 1 to Ngen do
3 Pparents ← select random(P,C);
4 Poffspring ← twoPointsCrossover(Pparents);
5 P ← P ∪ polyMutate(Poffspring);
6 Pobjectives ← evaluate(P,G objectives[]);
7 Psurvive ← survive(P, Pobjectives, L);
8 return P

Algorithm 1 formalizes the generation process of MoEvA2
described in Section 5.2.

Population initialization. The algorithm first initializes a
population P of L solutions. Here, an individual represents
a particular example that MoEvA2 produced through succes-
sive alterations of a given original example x. We specify that
the initial population comprises L copies of x. The reason we
do so is that we noticed, through preliminary experiments,
that this initialization was more effective than using random
examples. This is because the original input inherently sat-
isfies the constraints, which makes it easier to alter it into
adversarial inputs that satisfy the constraints as well.

Population evolution. The algorithm proceeds itera-
tively and make the population evolve into new “genera-
tions”, until it reaches a predefined number Ngen of iter-
ations/generations. At each iteration, MoEvA2 evaluates
each individual in the current population through the three-
objective function defined above. Hence, we know at each
stage if the algorithm has managed to successfully generate
constrained adversarial examples. The evolution of the popu-
lation then proceeds in three steps:

1. Crossover: We create new individuals using two-point
binary crossover [Deb et al., 2007]. This crossover is

useful for our approach to preserve constraint satisfac-
tion, as the “children” individuals keep the feature val-
ues of their “parents”. We randomly select the parents
from the current population.

2. Mutation: To introduce diversity in the population, we
randomly alter the features of each “child” (resulting
from crossover) using polynomial mutation [Deb et al.,
2007]. Our mutation operator enforces the satisfaction
of constraints that involve a single feature, e.g. it pre-
serves boundary constraints and does not change im-
mutable features. The set of children that result from
this mutation process is then added to the current popu-
lation.

3. Survival: MoEvA2 next determines which individuals
it should keep in the next generation. Being based on
R-NSGA-III, our algorithm uses non-dominance sorting
and reference directions to make this selection, based
on our three objective functions. That is, we place non-
dominated individuals in a first Pareto front and repeat
(without replacement) until we reach N Pareto fronts.
Individuals in these N Pareto fronts form the next gen-
eration and the others are discarded. If there are less
than L individuals (i.e., the population size), then, the
algorithm fills the population with individuals from the
N + 1-th front, selected using reference directions – an
approach that aims to maximize maximizes diversity in
the selection [Blank et al., 2021].

After the specified number of generations, the algorithm re-
turns the last population together with the evaluation of the
three objective functions.

C Experimental settings
C.1 Dataset and models
We evaluate C-PGD and MoEvA2 on four datasets of dif-
ferent sizes, number of features, and types (and number) of
constraints: Botnet attacks detection, credit scoring, malware
detection, and URL phishing detection.

[Chernikova and Oprea, 2019], [Aghakhani et al., 2020]
and [Hannousse and Yahiouche, 2021] showed that Random
Forest is the most effective model architecture to correctly
classify respectively, botnet attacks, malwares, and phishing
attacks on our datasets. [Ghamizi et al., 2020] demonstrated
that Random Forest for a credit scoring task is among the
most effective techniques. As they point out, this model ar-
chitecture is particularly interesting for its performance while
maintaining the interpretability, a common requirement in the
financial domain.
Credit scoring - LCLD: We engineer a dataset
from the publicly available Lending Club Loan Data
(https://www.kaggle.com/wordsforthewise/lending-club).
This dataset contains 151 features, and each example
represents a loan that was accepted by the Lending Club.
However, among these accepted loans, some are not repaid
and charged off instead. Our goal is to predict, at the request
time, whether the borrower will be repaid or charged off.
This dataset has been studied by multiple practitioners on
Kaggle. However, the original version of the dataset contains



only raw data and to the extent of our knowledge, there is no
featured engineered version commonly used. In particular,
one shall be careful when reusing feature-engineered ver-
sions, as most of the versions proposed present data leakage
in the training set that makes the prediction trivial. Therefore,
we propose our own feature engineering. The original dataset
contains 151 features. We remove the example for which
the feature “loan status” is different from “Fully paid” or
“Charged Off” as these represent the only final status of a
loan: for other values, the outcome is still uncertain. For our
binary classifier, a ‘Fully paid” loan is represented as 0 and
a “Charged Off” as 1. We start by removing all features that
are not set for more than 30% of the examples in the training
set. We also remove all features that are not available at
loan request time, as this would introduce bias. We impute
the features that are redundant (e.g. grade and sub-grade)
or too granular (e.g. address) to be useful for classification.
Finally, we use one-hot encoding for categorical features. We
obtain 47 input features and one target feature. We split the
dataset using random sampling stratified on the target class
and obtain a training set of 915K examples and a testing
set of 305K. They are both unbalanced, with only 20% of
charged-off loans (class 1). We trained a neural network to
classify accepted and rejected loans. It has 3 fully connected
hidden layers with 64, 32, and 16 neurons. Our model
achieved an AUROC score of 0.7236 Our random forest
model with 125 estimators reaches an AUROC score of 0.72

For each feature of this dataset, we define boundary con-
straints as the extremum value observed in the training set.
We consider the 19 features that are under the control of the
Lending Club as immutable. We identify 10 relationship con-
straints (3 linear, and 7 non-linear ones).

Botnet attacks - CTU-13: This is a feature-engineered ver-
sion of CTU-13 proposed by [Chernikova and Oprea, 2019].
It includes a mix of legit and botnet traffic flows from the
CTU University campus. Chernikova et al. aggregated the
raw network data related to packets, duration, and bytes for
each port from a list of commonly used ports. The dataset is
made of 143K training examples and 55K testing examples,
with 0.74% examples labeled in the botnet class (traffic that
a botnet generates). Data have 756 features, including 432
mutable features. We trained a neural network to classify le-
git and botnet traffic. It has 3 fully connected hidden layers
with 64, 64, and 32 neurons. Our model achieved an AU-
ROC score of 0.9967. We identified two types of constraints
that determine what feasible traffic data is. The first type con-
cerns the number of connections and requires that an attacker
cannot decrease it. The second type is inherent constraints
in network communications (e.g. maximum packet size for
TCP/UDP ports is 1500 bytes). In total, we identified 360
constraints.

In addition, we build and train a random forest classifier to
detect botnet attacks. Our model reaches an AUROC score of
0.9925

Malware detection - AIMED: Malwares are a major threat
to IT systems security. With the recent improvement of ma-
chine learning techniques, practitioners and researchers have
developed ML-based detection systems to discriminate ma-

licious software from benign software [Ucci et al., 2019].
Such systems are vulnerable to adversarial attacks as shown
by [Castro et al., 2019] with the AIMED attack: they success-
fully evade the classifier without reducing the malicious effect
of the software. We use the dataset of benign and malicious
portable executable provided in [Aghakhani et al., 2020]. In
the same paper, the authors showed that including packed and
unpacked benign executables with malicious ones is less bi-
ased towards detecting the packing as a sign of maliciousness.
Therefore, we select 4396 packed benign, 4396 unpacked be-
nign, and 8792 malicious executables. As in [Aghakhani et
al., 2020], we extract a set of static features: PE headers,
PE sections, DLL imports, API imports, Rich Header, File
generic. In total, we obtain a dataset of 17 584 samples and
24 222 features. We use 85% of the dataset for training and
validation and the remaining 15% for testing and adversarial
generation. The trained random forest classifier reaches a test
AUROC of 0.9957.

From the 24 222 features, we identify 88 immutable fea-
tures based on the PE format description from Microsoft. We
also extract feature relation constraints from the original PE
file examples we collected and those generated by AIMED.
For example, the sum of binary features set to 1 that describe
API imports should be less than the value of features api nb,
which represents the total number of imports on the PE file.
URL Phishing - ISCX-URL2016: Phishing attacks are
usually used to conduct cyber fraud or identity theft. This
kind of attack takes the form of a URL that reassembles a
legitimate URL (e.g. user’s favorite e-commerce platform)
but redirects to a fraudulent website that asks the user for
their personal or banking data. [Hannousse and Yahiouche,
2021] extracted features from legitimate and fraudulent URLs
as well as external service-based features to build a classifier
that can differentiate fraudulent URLs from legitimate ones.
The feature extracted from the URL includes the number of
special substrings such as “www”, “&”, “,”, “$”, ”and”, the
length of the URL, the port, the appearance of a brand in the
domain, in a subdomain or in the path, and the inclusion of
“http” or “https”. External service-based features include the
Google index, the page rank, and the presence of the domain
in the DNS records. The complete list of features is present
in the replication package. [Hannousse and Yahiouche, 2021]
provide a dataset of 5715 legit and 5715 malicious URLs. We
use 75% of the dataset for training and validation and the re-
maining 25% for testing and adversarial generation. The ran-
dom forest model obtains an AUROC score of 0.9676.

We extract a set of 14 relation constraints between the URL
features. Among them, 7 are linear constraints (e.g. length of
the hostname is less or equal to the length of the URL) and 7
are Boolean constraints of the type ifa > 0 then b > 0 (e.g.
if the number of http > 0 then the number slash “/” > 0).

C.2 Experimental setup and parameters
We propose to study the effectiveness of MoEvA2 attack
against 4 models per dataset: the first one is trained with
clean samples only, the second one with adversarial exam-
ples generated on the training set using MoEvA2 in addition
to the clean samples, the third by augmenting the features and
constraints of the clean samples and the fourth by combining



adversarial retraining and constraints augmentation. C-PGD
requires a gradient-based model which is not the case of ran-
dom forests therefore we do not evaluate this attack on the
random forest models.

For the LCLD and CTU-13 datasets, we reuse the same
maximum perturbation threshold as for the neural network.
That is 0.05 in defense and 0.2 in attack for LCLD, and 1.0
in defense, and 4.0 in attack for CTU-13. For Malware and
URL, we use the same threshold as LCLD. As for the original
study, the budget of the attack is set to 1000 generations for
CTU-13, as our preliminary study showed that the attack was
not effective with a limited budget on CTU-13. We use 100
generations for the other datasets and obtain a similar success
rate as for LCLD. We discuss the choice of these parameters
in the next section.

C.3 Implementation and hardware
We implement MoEvA2 as a framework using Python 3.8.8.
We use Pymoo’s implementation of genetic algorithms and
operators. Our models are trained using Tensorflow 2.5.
Moreover, MoEvA2 is compatible with any classifier that can
return the prediction probabilities for a given input x, no mat-
ter the framework used to train it. For the C-PGD approach,
we extend the implementation of PGD proposed by Trusted
AI in the Adversarial Robustness Toolbox [Nicolae et al.,
2018]. We also extend the Papernot attack implementation
from the safe toolbox to support random forests. We run our
experiments with neural networks on 2 Xeon E5-2680v4 @
2.4GHz for a total of 28 cores with 128 GB of RAM. The ones
with random forests are run on 2 AMD Epyc ROME 7H12 @
2.6 GHz for a total of 128 cores with 256GB of RAM.

C.4 Hyper-parameters evaluation
Our approaches present a large number of hyper-parameters.
We hypothesize that two of them have a direct impact on the
success rate. First, as commonly admit, the maximum al-
lowed perturbation ε. Given a large enough perturbation ε,
an attack shall always be able to find an adversarial, as even
a legit input from the target class becomes an “adversarial”.
Second, we hypothesize that the number of iterations given to
the C-PGD attack impacts the success rate. Concerning Mo-
EvA2, and as commonly admitted for genetic algorithms, the
number of generations shall have an impact on the success
rate of the attack. Preliminary experiments gave us an ap-
proximation of what would be a good value for these param-
eters. We chose an ε value of 0.2 and 4, respectively, for the
LCLD and CTU-13 projects. Note that the maximum pertur-
bation for normalized features between [0, 1] and L2 distance
is
√
n where n is the number of features, which is 6.86 and

27.48 for LCLD and CTU-13 respectively. With MoEvA2 at-
tack, we use 100 and 1000 generation for LCLD and CTU-13
respectively. We started by using the same budget for both
datasets. We found on a trial run on CTU-13 that, with only
100 generation, the objective function g1 (misclassification
probability) was slowly decreasing over the generation, but
was not able to reach the threshold. Therefore, we attempted
to augment the budget to 1000. We propose to study the im-
pact of ε and the number of generations/iterations on the suc-
cess rate C&M . We study the variation of the success rate

Number of Generations C&M

LCLD
50 95.45

100 97.48
200 98.45

CTU-13
100 12.92
500 99.48

1000 100.00

Table 5: Success rate (C&M) in % of MoEvA2, for different num-
bers of generations.

of our four attacks for ε ∈ [0.025, 0.5, 0.1, 0.2, 0.4] (LCLD)
and ε ∈ [0.5, 1, 2, 4, 8] (CTU-13) with the aforementioned
number of generations/iterations.

Figure 2 shows the success rate of our four attacks for dif-
ferent ε budgets on the LCLD use case. We see that C-PGD
reaches a plateau for ε = 0.1, while MoEvA2 does not show
any significant improvement after ε = 0.2. We want to have
a high success rate on both attacks for our main experiments
to properly assess the impact of our defense methods. There-
fore, we chose ε = 0.2. For the CTU-13 use case, we ob-
tained similar results for all ε and for both C-PGD and Mo-
EvA2.
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Figure 2: Success rate M&C of different attacks over ε budget on
LCLD. The curves for PGD and PGD+SAT overlap on the value 0.

We also study the impact of the number of genera-
tions/iterations on the success rate, with ε fixed to the afore-
mentioned values.

Table 5 shows that MoEvA2 requires different budgets de-
pending on the use case to reach a similar success rate. Addi-
tionally, we observe a high success rate from 50 generations
and from 500 generations for LCLD and CTU-13 respec-
tively. To properly assess the effectiveness of the defense,
and not be limited by the number of generations, we chose to
keep 100 and 1000 values as our default budget throughout
the paper.

Table 6 shows that the effect of the number of iterations



Number of Generations C&M

LCLD
500 8.88

1000 9.85
2000 10.75

CTU-13
500 0.00

1000 0.00
2000 0.00

Table 6: Success rate (C&M) in % of C-PGD, for different numbers
of iterations.

given to C-PGD does not influence significantly the success
rate of the attack. Moreover, we see that no matter the it-
eration budget, C-PGD is incapable of generating a single
adversarial example against the CTU-13 model. The same
experiment (omitted from the table) reveals that the classic
PGD and PGD coupled with a SAT solver fail to generate a
single constrained adversarial example against both models
no matter the number of iterations.

C.5 Combining constraints engineering and
adversarial retraining to defend against
search-based attacks.

Our previous results imply that both adversarial retraining us-
ing MoEva2 and constraint augmentation improve the robust-
ness of CML models. We argue that the two mechanisms are
complementary and can be combined for improved robust-
ness.

To evaluate the effectiveness of combining constraints en-
gineering with adversarial retraining to defend our model, we
compare the robustness of 4 defense scenarios against Mo-
EvA2 attack: the first one is no defense and is equivalent to
Section 7.1. The second approach uses adversarial retraining,
the third approach uses constraint augmentation, and the last
is adversarial retraining on a constraint-augmented model.

For a fair comparison, both the constraint-augmented and
the original model are adversarially retrained with the same
amount of inputs, even if the success rate of MoEva2 on the
constrain-augmented model is significantly lower, and thus
generates fewer adversarial examples to train with. Using
this protocol, we use 94K examples generated by MoEvA2
to retrain. That is about 3 times more than in Section 7.2.
Therefore, we expect the success rate of the attack to be dif-
ferent from the success rate in Section 7.2 even though we
use the same algorithm to generate the adversarial examples.

Table 7 presents the results for the credit-scoring task. We
show in Section 7.2, that constraint augmentation alone is suf-
ficient to protect the model against botnet detection adversar-
ials, a combination of the two defenses is therefore superflu-
ous.

Starting from a constrained success rate of 97.48% on a
defenseless model, the adversarial retraining lowers it to 82%
while attacks against a constraint augmented model yield an
80.43% success rate. Combining adversarial retraining on top
of a constraint augmentation defense leads to a success rate
of 77.23%, improved from using only one or the other tech-
nique.

Defense C M C&M

None 100.00 99.90 97.48
Augment 100.00 93.33 80.43
MoEvA2 100.00 89.00 82.00
MoEvA2 + Augment 100.00 89.23 77.23

Table 7: Success rate (%) of MoEvA2 against different defense
strategies according to 3 objectives, C for constraints satisfaction,
M for misclassification, and C& M for both constraints satisfaction
and misclassification for the same generated example.

Defense LCLD CTU-13 Malware URL

None 41.51 5.41 39.30 31.89
Augment 19.73 6.63 28.5 20.99

MoEvA2 3.90 4.67 37.69 22.14
MoEvA2 + Augment 00.77 4.67 28.98 15.94

Table 8: Success rate MoEvA2 after adversarial retraining and con-
straint augmentation.

Conclusion: Combining constraint augmentation and
adversarial retraining reduces the success rate of con-
strained adversarial attacks MoEva2 by about 20% com-
pared to unprotected models.

C.6 Evaluation of Random Forest Classifiers
Table 8 shows the success rate of MoEvA2 against 3 models
(clean, adversarially retrained and constraints augmented).
First, we observe that MoEvA2 successfully generates adver-
sarial examples for all 4 datasets on the clean random for-
est, although we noticed that the success rate is significantly
lower for the CTU-13 dataset.
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