Non-terrestrial network (NTN); satellite communication; unmanned aerial vehicle (UAV); 5G; mmWave; Internet of Things (IoT); mobile edge computing (MEC); artificial intelligence (AI); 6G; intelligent reconfigurable surfaces (IRS); terahertz communications; network slicing
Abstract :
[en] Non-terrestrial networks (NTNs) traditionally have certain limited applications. However, the recent technological advancements and manufacturing cost reduction opened up myriad applications of NTNs for 5G and beyond networks, especially when integrated into terrestrial networks (TNs). This article comprehensively surveys the evolution of NTNs highlighting their relevance to 5G networks and essentially, how it will play a pivotal role in the development of 6G ecosystem. We discuss important features of NTNs integration into TNs and the synergies by delving into the new range of services and use cases, various architectures, technological enablers, and higher layer aspects
pertinent to NTNs integration. Moreover, we review the corresponding challenges arising from the technical peculiarities and the new approaches being adopted to develop efficient integrated
ground-air-space (GAS) networks. Our survey further includes the major progress and outcomes from academic research as well as industrial efforts representing the main industrial trends, field
trials, and prototyping towards the 6G networks.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Azari, M. Mahdi
Solanki, Sourabh ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Chatzinotas, Symeon ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Kodheli, Oltjon
Sallouha, Hazem
Colpaert, Achiel
Montoya, J. F. Mendoza
Pollin, Sofie
Haqiqatnejad, Alireza
Mostaani, Arsham ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Lagunas, Eva ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Ottersten, Björn ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
External co-authors :
yes
Language :
English
Title :
Evolution of Non-Terrestrial Networks From 5G to 6G: A Survey
Publication date :
22 August 2022
Journal title :
IEEE Communications Surveys & Tutorials
eISSN :
1553-877X
Publisher :
Institute of Electrical and Electronics Engineers (IEEE)
Volume :
24
Issue :
4
Pages :
2633 - 2672
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
FnR Project :
FNR13713801 > Bjorn Ottersten > 5G-Sky > Interconnecting The Sky In 5g And Beyond - A Joint Communication And Control Approach > 01/06/2020 > 31/05/2023 > 2019
"Study on using satellite access in 5G," 3GPP, Sophia Antipolis, France, 3GPP Rep. TR 22.822, 2018. [Online]. Available: http://www. 3gpp. org/ftp//Specs/archive/22_series/22.822/22822-g00.zip
"Study on new radio to support non-terrestrial networks," 3GPP, Sophia Antipolis, France, 3GPP Rep. TR 38.811, 2018. [Online]. Available: http://www.3gpp. org/ftp//Specs/archive/38_series/38.811/ 38811-f00.zip
"Enhancements for unmanned aerial vehicles," 3GPP, Sophia Antipolis, France, 3GPP Rep. TR 22.829, 2019. [Online]. Available: https:// portal.3gpp. org/desktopmodules/Specifications/SpecificationDetails. aspx?specificationId=3557
M. M. Azari, F. Rosas, and S. Pollin, "Cellular connectivity for UAVs: Network modeling, performance analysis, and design guidelines," IEEE Trans. Wireless Commun., vol. 18, no. 7, pp. 3366-3381, Jul. 2019.
M. M. Azari, S. Solanki, S. Chatzinotas, and M. Bennis, "THzempowered UAVs in 6G: Opportunities, challenges, and trade-offs," IEEE Commun. Mag., vol. 60, no. 5, pp. 24-30, May 2022.
G. Geraci et al., "What will the future of UAV cellular communications be? a flight from 5G to 6G," 2021, arXiv:2105.04842.
N.-N. Dao et al., "Survey on aerial radio access networks: Toward a comprehensive 6G access infrastructure," IEEE Commun. Surveys Tuts., vol. 23, no. 2, pp. 1193-1225, 2nd Quart., 2021.
F. Rinaldi et al., "Non-terrestrial networks in 5G & beyond: A survey," IEEE Access, vol. 8, pp. 165178-165200, 2020.
O. Kodheli et al., "Satellite communications in the new space era: A survey and future challenges," IEEE Commun. Surveys Tuts., vol. 23, no. 1, pp. 70-109, 1st Quart., 2021.
S. Zhang, D. Zhu, and Y. Wang, "A survey on space-aerialterrestrial integrated 5G networks," Comput. Netw., vol. 174, Jun. 2020, Art. no. 107212.
Q. Wu et al., "A comprehensive overview on 5G-and-beyond networks with UAVs: From communications to sensing and intelligence," 2020, arXiv:2010.09317.
E. Vinogradov, H. Sallouha, S. De Bast, M. M. Azari, and S. Pollin, "Tutorial on UAV: A blue sky view on wireless communication," J. Mobile Multimedia, vol. 14, pp. 395-468, Oct. 2018.
J. Liu, Y. Shi, Z. M. Fadlullah, and N. Kato, "Space-air-ground integrated network: A survey," IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 2714-2741, 4th Quart., 2018.
M. Mozaffari, W. Saad, M. Bennis, Y.-H. Nam, and M. Debbah, "A tutorial on UAVs for wireless networks: Applications, challenges, and open problems," IEEE Commun. Surveys Tuts., vol. 21, no. 3, pp. 2334-2360, 3rd Quart., 2019.
N. Saeed, H. Almorad, H. Dahrouj, T. Y. Al-Naffouri, J. S. Shamma, and M.-S. Alouini, "Point-to-point communication in integrated satellite-aerial networks: State-of-the-art and future challenges," 2020, arXiv:2012.06182.
H. Yao, L. Wang, X. Wang, Z. Lu, and Y. Liu, "The space-terrestrial integrated network: An overview," IEEE Commun. Mag., vol. 56, no. 9, pp. 178-185, Sep. 2018.
E. Yaacoub and M.-S. Alouini, "A key 6G challenge and opportunity- Connecting the base of the pyramid: A survey on rural connectivity," Proc. IEEE, vol. 108, no. 4, pp. 533-582, Apr. 2020.
R. Shakeri et al., "Design challenges of multi-UAV systems in cyber-physical applications: A comprehensive survey and future directions," IEEE Commun. Surveys Tuts., vol. 21, no. 4, pp. 3340-3385, 4th Quart., 2019.
E. W. Frew and T. X. Brown, "Airborne communication networks for small unmanned aircraft systems," Proc. IEEE, vol. 96, no. 12, pp. 2008-2027, Dec. 2008.
L. Gupta, R. Jain, and G. Vaszkun, "Survey of important issues in UAV communication networks," IEEE Commun. Surveys Tuts., vol. 18, no. 2, pp. 1123-1152, 2nd Quart., 2016.
M. Giordani and M. Zorzi, "Non-terrestrial networks in the 6G era: Challenges and opportunities," IEEE Netw., vol. 35, no. 2, pp. 244-251, Mar./Apr. 2021.
A. S. Abdalla and V. Marojevic, "Communications standards for unmanned aircraft systems: The 3GPP perspective and research drivers," IEEE Commun. Standards Mag., vol. 5, no. 1, pp. 70-77, Mar. 2021.
H. Shakhatreh et al., "Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges," IEEE Access, vol. 7, pp. 48572-48634, 2019.
C. Liu, W. Feng, Y. Chen, C.-X. Wang, and N. Ge, "Cell-free satellite- UAV networks for 6G wide-area Internet of Things," IEEE J. Sel. Areas Commun., vol. 39, no. 4, pp. 1116-1131, Apr. 2021.
C. Zhang, W. Zhang, W. Wang, L. Yang, and W. Zhang, "Research challenges and opportunities of UAV millimeter-wave communications," IEEE Wireless Commun., vol. 26, no. 1, pp. 58-62, Feb. 2019.
S. A. R. Naqvi, S. A. Hassan, H. Pervaiz, and Q. Ni, "Droneaided communication as a key enabler for 5G and resilient public safety networks," IEEE Commun. Mag., vol. 56, no. 1, pp. 36-42, Jan. 2018.
N. Zhang, S. Zhang, P. Yang, O. Alhussein, W. Zhuang, and X. S. Shen, "Software defined space-air-ground integrated vehicular networks: Challenges and solutions," IEEE Commun. Mag., vol. 55, no. 7, pp. 101-109, Jul. 2017.
R. Xie, Q. Tang, Q. Wang, X. Liu, F. R. Yu, and T. Huang, "Satellite-terrestrial integrated edge computing networks: Architecture, challenges, and open issues," IEEE Netw., vol. 34, no. 3, pp. 224-231, May/Jun. 2020.
T. Hong, W. Zhao, R. Liu, and M. Kadoch, "Space-air-ground IoT network and related key technologies," IEEE Wireless Commun., vol. 27, no. 2, pp. 96-104, Apr. 2020.
N. Hosseini, H. Jamal, J. Haque, T. Magesacher, and D. W. Matolak, "UAV command and control, navigation and surveillance: A review of potential 5G and satellite systems," in Proc. IEEE Aerosp. Conf., 2019, pp. 1-10.
N. H. Motlagh, T. Taleb, and O. Arouk, "Low-altitude unmanned aerial vehicles-based Internet of Things services: Comprehensive survey and future perspectives," IEEE Internet Things J., vol. 3, no. 6, pp. 899-922, Dec. 2016.
Y. Zeng, R. Zhang, and T. J. Lim, "Wireless communications with unmanned aerial vehicles: Opportunities and challenges," IEEE Commun. Mag., vol. 54, no. 5, pp. 36-42, May 2016.
W. Shi, H. Zhou, J. Li, W. Xu, N. Zhang, and X. Shen, "Drone assisted vehicular networks: Architecture, challenges and opportunities," IEEE Netw., vol. 32, no. 3, pp. 130-137, May/Jun. 2018.
I. Bor-Yaliniz, M. Salem, G. Senerath, and H. Yanikomeroglu, "Is 5G ready for drones: A look into contemporary and prospective wireless networks from a standardization perspective," IEEE Wireless Commun., vol. 26, no. 1, pp. 18-27, Feb. 2019.
H. Zhang, L. Song, Z. Han, and H. V. Poor, "Cooperation techniques for a cellular Internet of unmanned aerial vehicles," IEEE Wireless Commun., vol. 26, no. 5, pp. 167-173, Oct. 2019.
D. Mishra and E. Natalizio, "A survey on cellular-connected UAVs: Design challenges, enabling 5G/B5G innovations, and experimental advancements," Comput. Netw., vol. 182, Dec. 2020, Art. no. 107451.
A. Sharma et al., "Communication and networking technologies for UAVs: A survey," J. Netw. Comput. Appl., vol. 168, Oct. 2020, Art. no. 102739.
Y. Zeng, Q. Wu, and R. Zhang, "Accessing from the sky: A tutorial on UAV communications for 5G and beyond," Proc. IEEE, vol. 107, no. 12, pp. 2327-2375, Dec. 2019.
M. Lin et al., "Integrated 5G-satellite networks: A perspective on physical layer reliability and security," IEEE Wireless Commun., vol. 27, no. 6, pp. 152-159, Dec. 2020.
L. Boero, R. Bruschi, F. Davoli, M. Marchese, and F. Patrone, "Satellite networking integration in the 5G ecosystem: Research trends and open challenges," IEEE Netw., vol. 32, no. 5, pp. 9-15, Sep./Oct. 2018.
"Solutions for NR to support non-terrestrial networks," 3GPP, Sophia Antipolis, France, 3GPP Rep. TR 38.821, 2019. [Online]. Available: https://portal.3gpp. org/desktopmodules/Specifications/ SpecificationDetails.aspx?specificationId=3525
P.-D. Arapoglou, S. Cioni, E. Re, and A. Ginesi, "Direct access to 5G new radio user equipment from NGSO satellites in millimeter waves," in Proc. 10th Adv. Satell. Multimedia Syst. Conf. 16th Signal Process. Space Commun. Workshop (ASMS/SPSC), 2020, pp. 1-8.
5G; Access to the 3GPP 5G Core Network (5GCN) via Non-3GPP Access Networks, 3GPP Standard TS 24.502 version 15.0.0 release 15, 2018.
"Enhanced LTE support for aerial vehicles," 3GPP, Sophia Antipolis, France, 3GPP Rep. TR 36.777, 2018. [Online]. Available: https:// portal.3gpp. org/desktopmodules/Specifications/SpecificationDetails. aspx?specificationId=3231
M. M. Azari, F. Rosas, A. Chiumento, and S. Pollin, "Coexistence of terrestrial and aerial users in cellular networks," in Proc. IEEE Globecom Workshops (GC Wkshps), 2017, pp. 1-6.
M. M. Azari, F. Rosas, and S. Pollin, "Reshaping cellular networks for the sky: Major factors and feasibility," in Proc. IEEE Int. Conf. Commun. (ICC), 2018, pp. 1-7.
L. David and A. Zaman, "Simulating iridium satellite coverage for CubeSats in low earth orbit," in Proc. 32nd Annu. AIAA/USU Conf. Small Satellites, 2018, pp. 1-10.
X. Zhang, L. Zhu, T. Li, Y. Xia, and W. Zhuang, "Multiple-user transmission in space information networks: Architecture and key techniques," IEEE Wireless Commun., vol. 26, no. 2, pp. 17-23, Apr. 2019.
L. Bai, L. Zhu, X. Zhang, W. Zhang, and Q. Yu, "Multi-satellite relay transmission in 5G: Concepts, techniques, and challenges," IEEE Netw., vol. 32, no. 5, pp. 38-44, Sep./Oct. 2018.
X. Lin et al., "5G new radio evolution meets satellite communications: Opportunities, challenges, and solutions," 2019, arXiv:1903.11219.
E. Lagunas, C. G. Tsinos, S. K. Sharma, and S. Chatzinotas, "5G cellular and fixed satellite service spectrum coexistence in C-band," IEEE Access, vol. 8, pp. 72078-72094, 2020.
"Satellite communications and space weather." Bureau of Meteorology, Australian Govt. 2022. [Online]. Available: https://www.sws.bom.gov. au/Educational/1/3/2
"How space weather affects space exploration." NASA. 2020. [Online]. Available: https://www.nasa.gov/mission-pages/rbsp/science/ rbsp-spaceweather-human.html
M. M. Azari, F. Rosas, K.-C. Chen, and S. Pollin, "Ultra reliable UAV communication using altitude and cooperation diversity," IEEE Trans. Commun., vol. 66, no. 1, pp. 330-344, Jan. 2018.
A. H. Arani, M. M. Azari, W. Melek, and S. Safavi-Naeini, "Learning in the sky: Towards efficient 3D placement of UAVs," in Proc. IEEE 31st Annu. Int. Symp. Pers. Indoor Mobile Radio Commun., 2020, pp. 1-7.
Unmanned Aerial Systems (UAS) Support in 3GPP, 3GPP Standard TS 22.125, 2019. [Online]. Available: https://portal.3gpp. org/desktop modules/Specifications/SpecificationDetails.aspx?specificationId=3545
M. M. Azari, G. Geraci, A. Garcia-Rodriguez, and S. Pollin, "UAVto- UAV communications in cellular networks," IEEE Trans. Wireless Commun., vol. 19, no. 9, pp. 6130-6144, Sep. 2020.
Base Station (BS) Radio Transmission and Reception, 3GPP Standard TS 38.104, 2019. [Online]. Available: https://portal.3gpp. org/desktop modules/Specifications/SpecificationDetails.aspx?specificationId=3202
L. Chiaraviglio et al., "Bringing 5G into rural and low-income areas: Is it feasible?" IEEE Commun. Standards Mag., vol. 1, no. 3, pp. 50-57, Sep. 2017.
M. Shafi et al., "Microwave vs. millimeter-wave propagation channels: Key differences and impact on 5G cellular systems," IEEE Commun. Mag., vol. 56, no. 12, pp. 14-20, Dec. 2018.
T. S. Rappaport, Y. Xing, G. R. MacCartney, A. F. Molisch, E. Mellios, and J. Zhang, "Overview of Millimeter wave communications for fifthgeneration (5G) wireless networks-With a focus on propagation models," IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 6213-6230, Dec. 2017.
F. Babich, M. Comisso, A. Cuttin, M. Marchese, and F. Patrone, "Nanosatellite-5G integration in the millimeter wave domain: A full top-down approach," IEEE Trans. Mobile Comput., vol. 19, no. 2, pp. 390-404, Feb. 2020.
C. Kourogiorgas, A. Z. Papafragkakis, A. D. Panagopoulos, and V. K. Sakarellos, "Cooperative diversity performance of hybrid satellite and terrestrial millimeter wave backhaul 5G networks," in Proc. Int. Workshop Antenna Technol. Small Antennas Innov. Struct. Appl. (iWAT), 2017, pp. 46-49.
A. Mudonhi, C. Sacchi, and F. Granelli, "SDN-based multimedia content delivery in 5G mmWave hybrid satellite-terrestrial networks," in Proc. IEEE 29th Annu. Int. Symp. Pers. Indoor Mobile Radio Commun. (PIMRC), 2018, pp. 1-7.
X. Artiga et al., "Shared access satellite-terrestrial reconfigurable backhaul network enabled by smart antennas at mmWave band," IEEE Netw., vol. 32, no. 5, pp. 46-53, Sep./Oct. 2018.
G. Ziaragkas et al., "SANSA-Hybrid terrestrial-satellite backhaul network: Scenarios, use cases, KPIs, architecture, network and physical layer techniques," Int. J. Satell. Commun. Netw., vol. 35, pp. 379-405, Sep./Oct. 2017.
H. Zhang, C. Jiang, J. Wang, L. Wang, Y. Ren, and L. Hanzo, "Multicast beamforming optimization in cloud-based heterogeneous terrestrial and satellite networks," IEEE Trans. Veh. Technol., vol. 69, no. 2, pp. 1766-1776, Feb. 2020.
B. Di, H. Zhang, L. Song, Y. Li, and G. Y. Li, "Ultra-dense LEO: Integrating terrestrial-satellite networks into 5G and beyond for data offloading," IEEE Trans. Wireless Commun., vol. 18, no. 1, pp. 47-62, Jan. 2019.
M. Xiao et al., "Millimeter wave communications for future mobile networks," IEEE J. Sel. Areas Commun., vol. 35, no. 9, pp. 1909-1935, Sep. 2017.
F. Khan and Z. Pi, "mmWave mobile broadband (MMB): Unleashing the 3-300 GHz spectrum," in Proc. 34th IEEE Sarnoff Symp., 2011, pp. 1-6.
W. Li, C. L. Law, V. K. Dubey, and J. T. Ong, "Ka-band land mobile satellite channel model incorporating weather effects," IEEE Commun. Lett., vol. 5, no. 5, pp. 194-196, May 2001.
C. Loo and J. S. Butterworth, "Land mobile satellite channel measurements and modeling," Proc. IEEE, vol. 86, no. 7, pp. 1442-1463, Jul. 1998.
A. Kelmendi, A. Hrovat, M. Mohorčič, and A. Švigelj, "Alphasat propagation measurements at Ka- and Q- bands in Ljubljana: Three years' statistical analysis," IEEE Antennas Wireless Propag. Lett., vol. 20, pp. 174-178, 2021.
J. P. Choi and V. W. S. Chan, "Optimum power and beam allocation based on traffic demands and channel conditions over satellite downlinks," IEEE Trans. Wireless Commun., vol. 4, no. 6, pp. 2983-2993, Nov. 2005.
J. Lei and M. Á. Vázquez-Castro, "Multibeam satellite frequency/time duality study and capacity optimization," J. Commun. Netw., vol. 13, no. 5, pp. 472-480, Oct. 2011.
M. G. Kibria, E. Lagunas, N. Maturo, H. Al-Hraishawi, and S. Chatzinotas, "Carrier aggregation in satellite communications: Impact and performance study," IEEE Open J. Commun. Soc., vol. 1, pp. 1390-1402, 2020.
E. Lagunas, S. Maleki, L. Lei, C. Tsinos, S. Chatzinotas, and B. Ottersten, "Carrier allocation for hybrid satellite-terrestrial backhaul networks," in Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), 2017, pp. 718-723.
E. Lagunas, S. Chatzinotas, and B. Ottersten, "Fair carrier allocation for 5G integrated satellite-terrestrial backhaul networks," in Proc. 25th Int. Conf. Telecommun. (ICT), 2018, pp. 617-622.
M. Shaat, E. Lagunas, A. I. Perez-Neira, and S. Chatzinotas, "Integrated terrestrial-satellite wireless backhauling: Resource management and benefits for 5G," IEEE Veh. Technol. Mag., vol. 13, no. 3, pp. 39-47, Sep. 2018.
Y. Kawamoto, T. Kamei, M. Takahashi, N. Kato, A. Miura, and M. Toyoshima, "Flexible resource allocation with inter-beam interference in satellite communication systems with a digital channelizer," IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 2934-2945, May 2020.
X. Liang, J. Jiao, S. Wu, and Q. Zhang, "Outage analysis of Multirelay multiuser hybrid satellite-terrestrial millimeter-wave networks," IEEE Wireless Commun. Lett., vol. 7, no. 6, pp. 1046-1049, Dec. 2018.
K. An and T. Liang, "Hybrid satellite-terrestrial relay networks with adaptive transmission," IEEE Trans. Veh. Technol., vol. 68, no. 12, pp. 12448-12452, Dec. 2019.
H. Al-Hraishawi, N. Maturo, E. Lagunas, and S. Chatzinotas, "Scheduling design and performance analysis of carrier aggregation in satellite communication systems," IEEE Trans. Veh. Technol., vol. 70, no. 8, pp. 7845-7857, Aug. 2021.
F. Guidolin, M. Nekovee, L. Badia, and M. Zorzi, "A study on the coexistence of fixed satellite service and cellular networks in a mmWave scenario," in Proc. IEEE Int. Conf. Commun. (ICC), 2015, pp. 2444-2449.
V. Icolari, D. Tarchi, A. Guidotti, and A. Vanelli-Coralli, "Genetic inspired scheduling algorithm for cognitive satellite systems," in Proc. IEEE Int. Conf. Commun. (ICC), 2016, pp. 1-6.
E. Lagunas, S. K. Sharma, S. Maleki, S. Chatzinotas, and B. Ottersten, "Resource allocation for cognitive satellite communications with incumbent terrestrial networks," IEEE Trans. Cogn. Commun. Netw., vol. 1, no. 3, pp. 305-317, Sep. 2015.
E. Lagunas, S. K. Sharma, S. Maleki, S. Chatzinotas, and B. Ottersten, "Power control for satellite uplink and terrestrial fixed-service coexistence in Ka-band," in Proc. IEEE 82nd Veh. Technol. Conf. (VTC-Fall), 2015, pp. 1-5.
E. Lagunas, S. Maleki, S. Chatzinotas, M. Soltanalian, A. I. Pérez- Neira, and B. Oftersten, "Power and rate allocation in cognitive satellite uplink networks," in Proc. IEEE Int. Conf. Commun. (ICC), 2016, pp. 1-6.
S. K. Sharma, S. Chatzinotas, J. Grotz, and B. Ottersten, "3D beamforming for spectral coexistence of satellite and terrestrial networks," in Proc. IEEE 82nd Veh. Technol. Conf. (VTC-Fall), 2015, pp. 1-5.
K. An, M. Lin, J. Guyang, T. Liang, J.-B. Wang, and W.-P. Zhu, "Outage performance for the cognitive broadband satellite system and terrestrial cellular network in millimeter wave scenario," in Proc. IEEE Int. Conf. Commun. (ICC), 2017, pp. 1-6.
Q. Zhang, K. An, X. Yan, and T. Liang, "Coexistence and performance limits for the cognitive broadband satellite system and mmWave cellular network," IEEE Access, vol. 8, pp. 51905-51917, 2020.
D. Peng, Y. Li, S. Chatzinotas, and B. Ottersten, "Hybrid analogdigital precoding for mmWave coexisting in 5G-satellite integrated network," in Proc. IEEE 31st Annu. Int. Symp. Pers. Indoor Mobile Radio Commun., 2020, pp. 1-6.
Z. Xiao, P. Xia, and X.-G. Xia, "Enabling UAV cellular with Millimeter-wave communication: Potentials and approaches," IEEE Commun. Mag., vol. 54, no. 5, pp. 66-73, May 2016.
L. Zhang et al., "A survey on 5G millimeter wave communications for UAV-assisted wireless networks," IEEE Access, vol. 7, pp. 117460-117504, 2019.
Z. Xiao, L. Zhu, and X.-G. Xia, "UAV communications with millimeter-wave beamforming: Potentials, scenarios, and challenges," China Commun., vol. 17, no. 9, pp. 147-166, Sep. 2020.
Z. Feng, L. Ji, Q. Zhang, and W. Li, "Spectrum management for mmWave enabled UAV swarm networks: Challenges and opportunities," IEEE Commun. Mag., vol. 57, no. 1, pp. 146-153, Jan. 2019.
W. Khawaja, O. Ozdemir, and I. Guvenc, "UAV air-to-ground channel characterization for mmWave systems," in Proc. IEEE 86th Veh. Technol. Conf. (VTC-Fall), 2017, pp. 1-5.
M. T. Dabiri, H. Safi, S. Parsaeefard, and W. Saad, "Analytical channel models for millimeter wave UAV networks under hovering fluctuations," IEEE Trans. Wireless Commun., vol. 19, no. 4, pp. 2868-2883, Apr. 2020.
M. Polese, L. Bertizzolo, L. Bonati, A. Gosain, and T. Melodia, "An experimental mmWave channel model for UAV-to-UAV communications," in Proc. 4th ACM Workshop Millimeter-Wave Netw. Sens. Syst., 2020, pp. 1-6.
A. Colpaert, E. Vinogradov, and S. Pollin, "Aerial coverage analysis of cellular systems at LTE and mmWave frequencies using 3D city models," Sensors, vol. 18, no. 12, p. 4311, 2018.
S. S. Kalamkar, F. Baccelli, F. M. Abinader, Jr., A. S. M. Fani, and L. G. U. Garcia, "Beam management in 5G: A stochastic geometry analysis," 2020, arXiv:2012.03181.
A. Colpaert, E. Vinogradov, and S. Pollin, "3D beamforming and handover analysis for UAV networks," in Proc. IEEE Globecom Workshops, 2020, pp. 1-6.
H.-L. Song, Y.-C. Ko, J. Cho, and C. Hwang, "Beam tracking algorithm for UAV communications using Kalman filter," in Proc. Int. Conf. Inf. Commun. Technol. Converg. (ICTC), 2020, pp. 1101-1104.
P. Zhou, X. Fang, Y. Fang, R. He, Y. Long, and G. Huang, "Beam management and self-healing for mmWave UAV mesh networks," IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1718-1732, Feb. 2019.
K. Heimann, J. Tiemann, S. Boecker, and C. Wietfeld, "On the potential of 5G mmWave pencil beam antennas for UAV communications: An experimental evaluation," in Proc. 22nd Int. ITG Workshop Smart Antennas, 2018, pp. 1-6.
Z. Zhang, Q. Zhu, and P. Zhang, "Fast beam tracking discontinuous reception for D2D-based UAV mmWave communication," IEEE Access, vol. 7, pp. 110487-110498, 2019.
B. Yang, T. Taleb, Y. Shen, X. Jiang, and W. Yang, "Performance, fairness, and tradeoff in UAV swarm underlaid mmWave cellular networks with directional antennas," IEEE Trans. Wireless Commun., vol. 20, no. 4, pp. 2383-2397, Apr. 2021.
M. Gapeyenko, V. Petrov, D. Moltchanov, S. Andreev, N. Himayat, and Y. Koucheryavy, "Flexible and reliable UAV-assisted backhaul operation in 5G mmWave cellular networks," IEEE J. Sel. Areas Commun., vol. 36, no. 11, pp. 2486-2496, Nov. 2018.
L. Wang, Y. L. Che, J. Long, L. Duan, and K. Wu, "Multiple access mmWave design for UAV-aided 5G communications," IEEE Wireless Commun., vol. 26, no. 1, pp. 64-71, Feb. 2019.
Z. Khosravi, M. Gerasimenko, S. Andreev, and Y. Koucheryavy, "Performance evaluation of UAV-assisted mmWave operation in mobility-enabled urban deployments," in Proc. 41st Int. Conf. Telecommun. Signal Process. (TSP), 2018, pp. 1-5.
A. Rahmati, Y. Yapici, N. Rupasinghe, I. Guvenc, H. Dai, and A. Bhuyan, "Energy efficiency of RSMA and NOMA in cellularconnected mmWave UAV networks," in Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), 2019, pp. 1-6.
J. Zhao, F. Gao, L. Kuang, Q. Wu, and W. Jia, "Channel tracking with flight control system for UAV mmWave MIMO communications," IEEE Commun. Lett., vol. 22, no. 6, pp. 1224-1227, Jun. 2018.
Y. Li, H. Wei, L. Li, Y. Han, J. Zhou, and W. Zhou, "An extensible multi-layer architecture model based on LEO-MSS and performance analysis," in Proc. IEEE 90th Veh. Technol. Conf. (VTC-Fall), 2019, pp. 1-6.
Y. Li, W. Zhou, and S. Zhou, "Forecast based handover in an extensible multi-layer LEO mobile satellite system," IEEE Access, vol. 8, pp. 42768-42783, 2020.
M. Giordani and M. Zorzi, "Satellite communication at millimeter waves: A key enabler of the 6G era," in Proc. Int. Conf. Comput. Netw. Commun. (ICNC), 2020, pp. 383-388.
"Final acts WRC-15." ITU-R. 2015. [Online]. Available: http://handle. itu.int/11.1002/pub/80d4e1c0-en
"Final acts WRC-19." ITU-R. 2019. [Online]. Available: http://handle. itu.int/11.1002/pub/813b5921-en
M. Marchese, A. Moheddine, and F. Patrone, "IoT and UAV integration in 5G hybrid terrestrial-satellite networks," Sensors, vol. 19, no. 17, p. 3704, 2019.
B. S. Chaudhari, M. Zennaro, and S. Borkar, "LPWAN technologies: Emerging application characteristics, requirements, and design considerations," Future Internet, vol. 12, no. 3, p. 46, 2020.
M. De Sanctis, E. Cianca, G. Araniti, I. Bisio, and R. Prasad, "Satellite communications supporting Internet of remote things," IEEE Internet Things J., vol. 3, no. 1, pp. 113-123, Feb. 2016.
"Study on narrow-band Internet of Things (NB-IoT)/enhanced machine type communication (eMTC) support for non-terrestrial networks," 3GPP, Sophia Antipolis, France, 3GPP Rep. TR 36.763, 2021. [Online]. Available: https://portal.3gpp. org/desktopmodules/ Specifications/SpecificationDetails.aspx?specificationId=3747
O. Liberg et al., "Narrowband Internet of Things for non-terrestrial networks," IEEE Commun. Standards Mag., vol. 4, no. 4, pp. 49-55, Dec. 2020.
S. Cluzel et al., "3GPP NB-IOT coverage extension using LEO satellites," in Proc. IEEE 87th Veh. Technol. Conf. (VTC Spring), 2018, pp. 1-5.
Y. Shi, Y. Xia, and Y. Ga, "Joint gateway selection and resource allocation for cross-tier communication in space-air-ground integrated IoT networks," IEEE Access, vol. 9, pp. 4303-4314, 2021.
H. Liao, Z. Zhou, X. Zhao, and Y. Wang, "Learning-based queue-aware task offloading and resource allocation for space-air-ground integrated power IoT," IEEE Internet Things J., vol. 8, no. 7, pp. 5250-5263, Apr. 2021.
H. Dai, H. Bian, C. Li, and B. Wang, "UAV-aided wireless communication design with energy constraint in space-air-ground integrated green IoT networks," IEEE Access, vol. 8, pp. 86251-86261, 2020.
N. Cheng et al., "Space/aerial-assisted computing offloading for IoT applications: A learning-based approach," IEEE J. Sel. Areas Commun., vol. 37, no. 5, pp. 1117-1129, May 2019.
C. Zhan and H. Lai, "Energy minimization in Internet-of-Things system based on rotary-wing UAV," IEEE Wireless Commun. Lett., vol. 8, no. 5, pp. 1341-1344, Oct. 2019.
J. Li et al., "Joint optimization on trajectory, altitude, velocity, and link scheduling for minimum mission time in UAV-aided data collection," IEEE Internet Things J., vol. 7, no. 2, pp. 1464-1475, Feb. 2020.
S. Fu, Y. Tang, N. Zhang, L. Zhao, S. Wu, and X. Jian, "Joint unmanned aerial vehicle (UAV) deployment and power control for Internet of Things networks," IEEE Trans. Veh. Technol., vol. 69, no. 4, pp. 4367-4378, Apr. 2020.
O. A. Saraereh, A. Alsaraira, I. Khan, and P. Uthansakul, "Performance evaluation of UAV-enabled LoRa networks for disaster management applications," Sensors, vol. 20, no. 8, p. 2396, 2020.
W. Feng et al., "UAV-enabled SWIPT in IoT networks for emergency communications," IEEE Wireless Commun., vol. 27, no. 5, pp. 140-147, Oct. 2020.
J.-M. Kang and C.-J. Chun, "Joint trajectory design, Tx power allocation, and Rx power splitting for UAV-enabled multicasting SWIPT systems," IEEE Syst. J., vol. 14, no. 3, pp. 3740-3743, Sep. 2020.
C. Jeong and S. H. Chae, "Simultaneous wireless information and power transfer for multiuser UAV-enabled IoT networks," IEEE Internet Things J., vol. 8, no. 10, pp. 8044-8055, May 2021.
H. Sallouha, M. M. Azari, A. Chiumento, and S. Pollin, "Aerial anchors positioning for reliable RSS-based outdoor localization in urban environments," IEEE Wireless Commun. Lett., vol. 7, no. 3, pp. 376-379, Jun. 2018.
H. Sallouha, M. M. Azari, and S. Pollin, "Energy-constrained UAV trajectory design for ground node localization," in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2018, pp. 1-7.
D. Ebrahimi, S. Sharafeddine, P.-H. Ho, and C. Assi, "Autonomous UAV trajectory for localizing ground objects: A reinforcement learning approach," IEEE Trans. Mobile Comput., vol. 20, no. 4, pp. 1312-1324, Apr. 2021.
H. Sallouha, A. Chiumento, and S. Pollin, "Aerial vehicles tracking using noncoherent crowdsourced wireless networks," IEEE Trans. Veh. Technol., vol. 70, no. 10, pp. 10780-10791, Oct. 2021.
G. Yang, X. Shi, L. Feng, S. He, Z. Shi, and J. Chen, "CEDAR: A costeffective Crowdsensing system for detecting and localizing drones," IEEE Trans. Mobile Comput., vol. 19, no. 9, pp. 2028-2043, Sep. 2020.
B. Lashkari, J. Rezazadeh, R. Farahbakhsh, and K. Sandrasegaran, "Crowdsourcing and sensing for indoor localization in IoT: A review," IEEE Sensors J., vol. 19, no. 7, pp. 2408-2434, Apr. 2019.
R. Barbau, V. Deslandes, G. Jakllari, J. Tronc, J.-F. Chouteau, and A.-L. Beylot, "NB-IoT over GEO satellite: Performance analysis," in Proc. 10th Adv. Satell. Multimedia Syst. Conf. 16th Signal Process. Space Commun. Workshop (ASMS/SPSC), 2020, pp. 1-8.
O. Kodheli, S. Andrenacci, N. Maturo, S. Chatzinotas, and F. Zimmer, "An uplink UE group-based scheduling technique for 5G mMTC systems over LEO satellite," IEEE Access, vol. 7, pp. 67413-67427, 2019.
M. Conti, S. Andrenacci, N. Maturo, S. Chatzinotas, and A. Vanelli- Coralli, "Doppler impact analysis for NB-IoT and satellite systems integration," in Proc. IEEE Int. Conf. Commun. (ICC), 2020, pp. 1-7.
N. Celandroni et al., "A survey of architectures and scenarios in satellite-based wireless sensor networks: System design aspects," Int. J. Satell. Commun. Netw., vol. 31, no. 1, pp. 1-38, 2013. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/sat.1019
J.-B. Doré and V. Berg, "TURBO-FSK: A 5G NB-IoT evolution for LEO satellite networks," in Proc. IEEE Global Conf. Signal Inf. Process. (GlobalSIP), 2018, pp. 1040-1044.
C. Laoudias, A. Moreira, S. Kim, S. Lee, L. Wirola, and C. Fischione, "A survey of enabling technologies for network localization, tracking, and navigation," IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 3607-3644, 4th Quart., 2018.
E. Kaplan and C. Hegarty, Understanding GPS: Principles and Applications. Boston, MA, USA: Artech House, 2005.
R. Calvo-Palomino et al., "Electrosense+: Crowdsourcing radio spectrum decoding using IoT receivers," Comput. Netw., vol. 174, Jun. 2020, Art. no. 107231.
F. Minucci, E. Vinogradov, and S. Pollin, "Avoiding collisions at any (low) cost: ADS-B like position broadcast for UAVs," IEEE Access, vol. 8, pp. 121843-121857, 2020.
M. A. Abd-Elmagid, N. Pappas, and H. S. Dhillon, "On the role of age of information in the Internet of Things," IEEE Commun. Mag., vol. 57, no. 12, pp. 72-77, Dec. 2019.
Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, "A survey on mobile edge computing: The communication perspective," IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322-2358, 4th Quart., 2017.
T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, "On multi-access edge computing: A survey of the emerging 5G network edge cloud architecture and orchestration," IEEE Commun. Surveys Tuts., vol. 19, no. 3, pp. 1657-1681, 3rd Quart., 2017.
I. Morris. "ETSI drops 'mobile' from MEC." 2016. [Online]. Available: https://www.lightreading.com/mobile/mec-(mobile-edge-computing)/ etsi-drops-mobile-from-mec/d/d-id/726273
K. Zhang, Y. Mao, S. Leng, Y. He, and Y. Zhang, "Mobile-edge computing for vehicular networks: A promising network paradigm with predictive off-loading," IEEE Veh. Technol. Mag., vol. 12, no. 2, pp. 36-44, Jun. 2017.
J. Park, S. Solanki, S. Baek, and I. Lee, "Latency minimization for wireless powered mobile edge computing networks with nonlinear rectifiers," IEEE Trans. Veh. Technol., vol. 70, no. 8, pp. 8320-8324, Aug. 2021.
Z. Zhang, W. Zhang, and F.-H. Tseng, "Satellite mobile edge computing: Improving QoS of high-speed satellite-terrestrial networks using edge computing techniques," IEEE Netw., vol. 33, no. 1, pp. 70-76, Jan./Feb. 2019.
Y. Wang, J. Zhang, X. Zhang, P. Wang, and L. Liu, "A computation offloading strategy in satellite terrestrial networks with double edge computing," in Proc. IEEE Int. Conf. Commun. Syst. (ICCS), 2018, pp. 450-455.
Y. Wang, J. Yang, X. Guo, and Z. Qu, "A game-theoretic approach to computation offloading in satellite edge computing," IEEE Access, vol. 8, pp. 12510-12520, 2020.
G. Cui, X. Li, L. Xu, and W. Wang, "Latency and energy optimization for MEC enhanced SAT-IoT networks," IEEE Access, vol. 8, pp. 55915-55926, 2020.
W. Abderrahim, O. Amin, M.-S. Alouini, and B. Shihada, "Latencyaware offloading in integrated satellite terrestrial networks," IEEE Open J. Commun. Soc., vol. 1, pp. 490-500, 2020.
T. Kim and J. P. Choi, "Performance analysis of satellite server mobile edge computing architecture," in Proc. IEEE 92nd Veh. Technol. Conf. (VTC-Fall), 2020, pp. 1-6.
N. Cheng et al., "Air-ground integrated mobile edge networks: Architecture, challenges, and opportunities," IEEE Commun. Mag., vol. 56, no. 8, pp. 26-32, Aug. 2018.
F. Zhou, R. Q. Hu, Z. Li, and Y. Wang, "Mobile edge computing in unmanned aerial vehicle networks," IEEE Wireless Commun., vol. 27, no. 1, pp. 140-146, Feb. 2020.
A. Mostaani, T. X. Vu, S. Chatzinotas, and B. Ottersten, "Task-based information compression for multi-agent communication problems with channel rate constraints," 2020, arXiv:2005.14220.
A. Mostaani, T. X. Vu, S. K. Sharma, Q. Liao, and S. Chatzinotas, "Task-oriented communication system design in cyberphysical systems: A survey on theory and applications," 2021, arXiv:2102.07166.
J. Zhang et al., "Stochastic computation offloading and trajectory scheduling for UAV-assisted mobile edge computing," IEEE Internet Things J., vol. 6, no. 2, pp. 3688-3699, Apr. 2019.
H. Guo and J. Liu, "UAV-enhanced intelligent offloading for Internet of Things at the edge," IEEE Trans. Ind. Informat., vol. 16, no. 4, pp. 2737-2746, Apr. 2020.
C. Zhan, H. Hu, X. Sui, Z. Liu, and D. Niyato, "Completion time and energy optimization in the UAV-enabled mobile-edge computing system," IEEE Internet Things J., vol. 7, no. 8, pp. 7808-7822, Aug. 2020.
N. H. Motlagh, M. Bagaa, and T. Taleb, "UAV-based IoT platform: A crowd surveillance use case," IEEE Commun. Mag., vol. 55, no. 2, pp. 128-134, Feb. 2017.
M.-A. Messous, S.-M. Senouci, H. Sedjelmaci, and S. Cherkaoui, "A game theory based efficient computation offloading in an UAV network," IEEE Trans. Veh. Technol., vol. 68, no. 5, pp. 4964-4974, May 2019.
J. Zhou, D. Tian, Z. Sheng, X. Duan, and X. Shen, "Joint mobility, communication and computation optimization for UAVs in air-ground cooperative networks," IEEE Trans. Veh. Technol., vol. 70, no. 3, pp. 2493-2507, Mar. 2021.
S. Sun, G. Zhang, H. Mei, K. Wang, and K. Yang, "Optimizing multi- UAV deployment in 3-D space to minimize task completion time in UAV-enabled mobile edge computing systems," IEEE Commun. Lett., vol. 25, no. 2, pp. 579-583, Feb. 2021.
S. Jeong, O. Simeone, and J. Kang, "Mobile edge computing via a UAV-mounted cloudlet: Optimization of bit allocation and path planning," IEEE Trans. Veh. Technol., vol. 67, no. 3, pp. 2049-2063, Mar. 2018.
X. Cao, J. Xu, and R. Zhang, "Mobile edge computing for cellularconnected UAV: Computation offloading and trajectory optimization," in Proc. IEEE 19th Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), 2018, pp. 1-5.
Y. K. Tun, Y. M. Park, N. H. Tran, W. Saad, S. R. Pandey, and C. S. Hong, "Energy-efficient resource management in UAVassisted mobile edge computing," IEEE Commun. Lett., vol. 25, no. 1, pp. 249-253, Jan. 2021.
F. Zhou, Y. Wu, R. Q. Hu, and Y. Qian, "Computation rate Maximization in UAV-enabled wireless-powered mobile-edge computing systems," IEEE J. Sel. Areas Commun., vol. 36, no. 9, pp. 1927-1941, Sep. 2018.
M. Hua, Y. Huang, Y. Sun, Y. Wang, and L. Yang, "Energy optimization for cellular-connected UAV mobile edge computing systems," in Proc. IEEE Int. Conf. Commun. Syst. (ICCS), 2018, pp. 1-6.
M. Hua, Y. Wang, C. Li, Y. Huang, and L. Yang, "UAV-aided mobile edge computing systems with one by one access scheme," IEEE Trans. Green Commun. Netw., vol. 3, no. 3, pp. 664-678, Sep. 2019.
M. Li, N. Cheng, J. Gao, Y. Wang, L. Zhao, and X. Shen, "Energyefficient UAV-assisted mobile edge computing: Resource allocation and trajectory optimization," IEEE Trans. Veh. Technol., vol. 69, no. 3, pp. 3424-3438, Mar. 2020.
C. Zhou et al., "Delay-aware IoT task scheduling in space-airground integrated network," in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2019, pp. 1-6.
L. Zhang, H. Zhang, C. Guo, H. Xu, L. Song, and Z. Han, "Satellite-aerial integrated computing in disasters: User association and offloading decision," in Proc. IEEE Int. Conf. Commun. (ICC), 2020, pp. 554-559.
P. Cao, Y. Liu, C. Yang, S. Xie, and K. Xie, "MEC-driven UAV-enabled routine inspection scheme in wind farm under wind influence," IEEE Access, vol. 7, pp. 179252-179265, 2019.
P. Domingos, "A few useful things to know about machine learning," Commun. ACM, vol. 55, no. 10, pp. 78-87, 2012.
J. R. Koza, F. H. Bennett, III, D. Andre, and M. A. Keane, "Automated design of both the topology and sizing of analog electrical circuits using genetic programming," in Artificial Intelligence in Design. Dordrecht, The Netherlands: Springer, 1996, pp. 151-170.
Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning From Data, vol. 4. New York, NY, USA: AMLBook, 2012.
O. Simeone, "A very brief introduction to machine learning with applications to communication systems," IEEE Trans. Cogn. Commun. Netw., vol. 4, no. 4, pp. 648-664, Dec. 2018.
O. Simeone, "A brief introduction to machine learning for engineers," 2017, arXiv:1709.02840.
C. Jiang, H. Zhang, Y. Ren, Z. Han, K.-C. Chen, and L. Hanzo, "Machine learning paradigms for next-generation wireless networks," IEEE Wireless Commun., vol. 24, no. 2, pp. 98-105, Apr. 2017.
T. Wang, C.-K. Wen, H. Wang, F. Gao, T. Jiang, and S. Jin, "Deep learning for wireless physical layer: Opportunities and challenges," China Commun., vol. 14, no. 11, pp. 92-111, Nov. 2017.
R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge, MA, USA: MIT Press, 2018.
C. Amato, G. Chowdhary, A. Geramifard, N. K. Üre, and M. J. Kochenderfer, "Decentralized control of partially observable Markov decision processes," in Proc. 52nd IEEE Conf. Decis. Control, 2013, pp. 2398-2405.
V. Mnih et al., "Human-level control through deep reinforcement learning," Nature, vol. 518, no. 7540, pp. 529-533, 2015.
T. P. Lillicrap et al., "Continuous control with deep reinforcement learning," 2015, arXiv:1509.02971.
A. Feriani and E. Hossain, "Single and multi-agent deep reinforcement learning for AI-enabled wireless networks: A tutorial," IEEE Commun. Surveys Tuts., vol. 23, no. 2, pp. 1226-1252, 2nd Quart., 2021.
S. Ali et al., "6G white paper on machine learning in wireless communication networks," 2020, arXiv:2004.13875.
M. Jia, X. Zhang, J. Sun, X. Gu, and Q. Guo, "Intelligent resource management for satellite and terrestrial spectrum shared networking toward B5G," IEEE Wireless Commun., vol. 27, no. 1, pp. 54-61, Feb. 2020.
B. Deng, C. Jiang, H. Yao, S. Guo, and S. Zhao, "The next generation heterogeneous satellite communication networks: Integration of resource management and deep reinforcement learning," IEEE Wireless Commun., vol. 27, no. 2, pp. 105-111, Apr. 2020.
P. V. R. Ferreira et al., "Multiobjective reinforcement learning for cognitive satellite communications using deep neural network ensembles," IEEE J. Sel. Areas Commun., vol. 36, no. 5, pp. 1030-1041, May 2018.
S. Nie, J. M. Jornet, and I. F. Akyildiz, "Deep-learning-based resource allocation for multi-band communications in CubeSat networks," in Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), 2019, pp. 1-6.
C. Jiang and X. Zhu, "Reinforcement learning based capacity management in multi-layer satellite networks," IEEE Trans. Wireless Commun., vol. 19, no. 7, pp. 4685-4699, Jul. 2020.
X. Yan, K. An, Q. Zhang, G. Zheng, S. Chatzinotas, and J. Han, "Delay constrained resource allocation for NOMA enabled satellite Internet of Things with deep reinforcement learning," IEEE Internet Things J., early access, 2020. [Online]. Available: http://hdl.handle.net/10993/ 45468
C. Qiu, H. Yao, F. R. Yu, F. Xu, and C. Zhao, "Deep Q-learning aided networking, caching, and computing resources allocation in softwaredefined satellite-terrestrial networks," IEEE Trans. Veh. Technol., vol. 68, no. 6, pp. 5871-5883, Jun. 2019.
P. V. R. Ferreira et al., "Reinforcement learning for satellite communications: From LEO to deep space operations," IEEE Commun. Mag., vol. 57, no. 5, pp. 70-75, May 2019.
L. Lei, E. Lagunas, Y. Yuan, M. G. Kibria, S. Chatzinotas, and B. Ottersten, "Beam illumination pattern design in satellite networks: Learning and optimization for efficient beam hopping," IEEE Access, vol. 8, pp. 136655-136667, 2020.
B. Zhao, J. Liu, Z. Wei, and I. You, "A deep reinforcement learning based approach for energy-efficient channel allocation in satellite Internet of Things," IEEE Access, vol. 8, pp. 62197-62206, 2020.
G. Cui, X. Li, L. Xu, and W. Wang, "Latency and energy optimization for MEC enhanced AT-IoT networks," IEEE Access, vol. 8, pp. 55915-55926, 2020.
H. Tsuchida et al., "Efficient power control for satellite-borne batteries using Q-learning in low-earth-orbit satellite constellations," IEEE Wireless Commun. Lett., vol. 9, no. 6, pp. 809-812, Jun. 2020.
X. Hu et al., "Deep reinforcement learning-based beam hopping algorithm in multibeam satellite systems," IET Commun., vol. 13, no. 16, pp. 2485-2491, 2019.
X. Hu, Y. Zhang, X. Liao, Z. Liu, W. Wang, and F. M. Ghannouchi, "Dynamic beam hopping method based on multi-objective deep reinforcement learning for next generation satellite broadband systems," IEEE Trans. Broadcast., vol. 66, no. 3, pp. 630-646, Sep. 2020.
Z. Wang, J. Zhang, X. Zhang, and W. Wang, "Reinforcement learning based congestion control in satellite Internet of Things," in Proc. 11th Int. Conf. Wireless Commun. Signal Process. (WCSP), 2019, pp. 1-6.
J. Wei and S. Cao, "Application of edge intelligent computing in satellite Internet of Things," in Proc. IEEE Int. Conf. Smart Internet Things (SmartIoT), 2019, pp. 85-91.
H. Xu, D. Li, M. Liu, G. Han, W. Huang, and C. Xu, "QoE-driven intelligent handover for user-centric mobile satellite networks," IEEE Trans. Veh. Technol., vol. 69, no. 9, pp. 10127-10139, Sep. 2020.
P. Henarejos, M. Á. Vázquez, and A. I. Pérez-Neira, "Deep learning for experimental hybrid terrestrial and satellite interference management," in Proc. IEEE 20th Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), 2019, pp. 1-5.
Q. Liu, J. Yang, C. Zhuang, A. Barnawi, and B. A. Alzahrani, "Artificial intelligence based mobile tracking and antenna pointing in satelliteterrestrial network," IEEE Access, vol. 7, pp. 177497-177503, 2019.
H. F. Ates, S. M. Hashir, T. Baykas, and B. K. Gunturk, "Path loss exponent and shadowing factor prediction from satellite images using deep learning," IEEE Access, vol. 7, pp. 101366-101375, 2019.
J. Thrane, D. Zibar, and H. L. Christiansen, "Model-aided deep learning method for path loss prediction in mobile communication systems at 2.6 GHz," IEEE Access, vol. 8, pp. 7925-7936, 2020.
O. Ahmadien, H. F. Ates, T. Baykas, and B. K. Gunturk, "Predicting path loss distribution of an area from satellite images using deep learning," IEEE Access, vol. 8, pp. 64982-64991, 2020.
N. Kato et al., "Optimizing space-air-ground integrated networks by artificial intelligence," IEEE Wireless Commun., vol. 26, no. 4, pp. 140-147, Aug. 2019.
C. Zhou et al., "Deep reinforcement learning for delay-oriented IoT task scheduling in SAGIN," IEEE Trans. Wireless Commun., vol. 20, no. 2, pp. 911-925, Feb. 2021.
H. Liao, Z. Zhou, X. Zhao, and Y. Wang, "Learning-based queue-aware task offloading and resource allocation for space-air-ground-integrated power IoT," IEEE Internet Things J., vol. 8, no. 7, pp. 5250-5263, Apr. 2021.
E. T. Michailidis, S. M. Potirakis, and A. G. Kanatas, "AI-inspired non-terrestrial networks for IIoT: Review on enabling technologies and applications," IoT, vol. 1, no. 1, pp. 21-48, 2020.
S. Gu, Q. Zhang, and W. Xiang, "Coded storage-and-computation: A new paradigm to enhancing intelligent services in space-airground integrated networks," IEEE Wireless Commun., vol. 27, no. 6, pp. 44-51, Dec. 2020.
J. Hu, H. Zhang, L. Song, Z. Han, and H. V. Poor, "Reinforcement learning for a cellular Internet of UAVs: Protocol design, trajectory control, and resource management," IEEE Wireless Commun., vol. 27, no. 1, pp. 116-123, Feb. 2020.
X. Liu, Y. Liu, Y. Chen, and L. Hanzo, "Trajectory design and power control for multi-UAV assisted wireless networks: A machine learning approach," IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 7957-7969, Aug. 2019.
U. Challita, W. Saad, and C. Bettstetter, "Interference management for cellular-connected UAVs: A deep reinforcement learning approach," IEEE Trans. Wireless Commun., vol. 18, no. 4, pp. 2125-2140, Apr. 2019.
S. Shakoor, Z. Kaleem, D.-T. Do, O. A. Dobre, and A. Jamalipour, "Joint optimization of UAV 3-D placement and path-loss factor for energy-efficient maximal coverage," IEEE Internet Things J., vol. 8, no. 12, pp. 9776-9786, Jun. 2021.
A. M. Koushik, F. Hu, and S. Kumar, "Deep Q-learning-based node positioning for throughput-optimal communications in dynamic UAV swarm network," IEEE Trans. Cogn. Commun. Netw., vol. 5, no. 3, pp. 554-566, Sep. 2019.
Y. Hu, M. Chen, W. Saad, H. V. Poor, and S. Cui, "Distributed multiagent Meta learning for trajectory design in wireless drone networks," 2020, arXiv:2012.03158.
A. Garg, "Machine learning coupled trajectory and communication design for UAV-facilitated wireless networks," 2020, arXiv:2101.10454.
M. T. Mamaghani and Y. Hong, "Intelligent trajectory design for secure full-duplex MIMO-UAV relaying against active eavesdroppers: A model-free reinforcement learning approach," IEEE Access, vol. 9, pp. 4447-4465, 2021.
H. Bayerlein, M. Theile, M. Caccamo, and D. Gesbert, "UAV path planning for wireless data harvesting: A deep reinforcement learning approach," 2020, arXiv:2007.00544.
J. Hu, H. Zhang, L. Song, R. Schober, and H. V. Poor, "Cooperative Internet of UAVs: Distributed trajectory design by multi-agent deep reinforcement learning," IEEE Trans. Commun., vol. 68, no. 11, pp. 6807-6821, Nov. 2020.
J. Cui, Z. Ding, Y. Deng, A. Nallanathan, and L. Hanzo, "Adaptive UAV-trajectory optimization under quality of service constraints: A model-free solution," IEEE Access, vol. 8, pp. 112253-112265, 2020.
Y. Li, A. H. Aghvami, and D. Dong, "Intelligent trajectory planning in UAV-mounted wireless networks: A quantum-inspired reinforcement learning perspective," 2020, arXiv:2007.13418.
F. Wu, H. Zhang, J. Wu, and L. Song, "Cellular UAV-to-device communications: Trajectory design and mode selection by multi-agent deep reinforcement learning," IEEE Trans. Commun., vol. 68, no. 7, pp. 4175-4189, Jul. 2020.
X. Liu, Y. Liu, and Y. Chen, "Machine learning empowered trajectory and passive beamforming design in UAV-RIS wireless networks," IEEE J. Sel. Areas Commun., vol. 39, no. 7, pp. 2042-2055, Jul. 2021.
P. Susarla et al., "Learning-based trajectory optimization for 5G mmWave uplink UAVs," in Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), 2020, pp. 1-7.
B. Khamidehi and E. S. Sousa, "A double Q-learning approach for navigation of aerial vehicles with connectivity constraint," in Proc. IEEE Int. Conf. Commun. (ICC), 2020, pp. 1-6.
Y. Zeng and X. Xu, "Path design for cellular-connected UAV with reinforcement learning," in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2019, pp. 1-6.
X. Liu, Y. Liu, and Y. Chen, "Reinforcement learning in multiple- UAV networks: Deployment and movement design," IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 8036-8049, Aug. 2019.
C. H. Liu, X. Ma, X. Gao, and J. Tang, "Distributed energy-efficient multi-UAV navigation for long-term communication coverage by deep reinforcement learning," IEEE Trans. Mobile Comput., vol. 19, no. 6, pp. 1274-1285, Jun. 2020.
H. Huang, Y. Yang, H. Wang, Z. Ding, H. Sari, and F. Adachi, "Deep reinforcement learning for UAV navigation through massive MIMO technique," IEEE Trans. Veh. Technol., vol. 69, no. 1, pp. 1117-1121, Jan. 2020.
M. M. Azari, A. H. Arani, and F. Rosas, "Mobile cellular-connected UAVs: Reinforcement learning for sky limits," in Proc. IEEE Globecom Workshops (GC Wkshps), 2020, pp. 1-6.
Y. Chen, X. Lin, T. A. Khan, and M. Mozaffari, "A deep reinforcement learning approach to efficient drone mobility support," 2020, arXiv:2005.05229.
L. Li et al., "Millimeter-wave networking in the sky: A machine learning and mean field game approach for joint beamforming and beam-steering," IEEE Trans. Wireless Commun., vol. 19, no. 10, pp. 6393-6408, Oct. 2020.
W. Yuan, C. Liu, F. Liu, S. Li, and D. W. K. Ng, "Learning-based predictive beamforming for UAV communications with jittering," IEEE Wireless Commun. Lett., vol. 9, no. 11, pp. 1970-1974, Nov. 2020.
S. K. Moorthy and Z. Guan, "Beam learning in mmWave/THz-band drone networks under in-flight mobility uncertainties," IEEE Trans. Mobile Comput., vol. 21, no. 6, pp. 1945-1957, Jun. 2022.
S. F. Abedin, M. S. Munir, N. H. Tran, Z. Han, and C. S. Hong, "Data freshness and energy-efficient UAV navigation optimization: A deep reinforcement learning approach," IEEE Trans. Intell. Transp. Syst., vol. 22, no. 9, pp. 5994-6006, Sep. 2021.
M. Yi, X. Wang, J. Liu, Y. Zhang, and B. Bai, "Deep reinforcement learning for fresh data collection in UAV-assisted IoT networks," in Proc. IEEE Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), 2020, pp. 716-721.
L. Sun, L. Wan, and X. Wang, "Learning-based resource allocation strategy for industrial IoT in UAV-enabled MEC systems," IEEE Trans. Ind. Informat., vol. 17, no. 7, pp. 5031-5040, Jul. 2021.
L. Yang, H. Yao, J. Wang, C. Jiang, A. Benslimane, and Y. Liu, "Multi- UAV-enabled load-balance mobile-edge computing for IoT networks," IEEE Internet Things J., vol. 7, no. 8, pp. 6898-6908, Aug. 2020.
Y. Cao, L. Zhang, and Y.-C. Liang, "Deep reinforcement learning for channel and power allocation in UAV-enabled IoT systems," in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2019, pp. 1-6.
Y. Liu, S. Xie, and Y. Zhang, "Cooperative offloading and resource management for UAV-enabled mobile edge computing in power IoT system," IEEE Trans. Veh. Technol., vol. 69, no. 10, pp. 12229-12239, Oct. 2020.
L. Zhang et al., "Task offloading and trajectory control for UAVassisted mobile edge computing using deep reinforcement learning," IEEE Access, vol. 9, pp. 53708-53719, 2021.
S. Zhu, L. Gui, D. Zhao, N. Cheng, Q. Zhang, and X. Lang, "Learningbased computation offloading approaches in UAVs-assisted edge computing," IEEE Trans. Veh. Technol., vol. 70, no. 1, pp. 928-944, Jan. 2021.
Z. Cao, P. Zhou, R. Li, S. Huang, and D. Wu, "Multiagent deep reinforcement learning for joint multichannel access and task offloading of mobile-edge computing in industry 4.0," IEEE Internet Things J., vol. 7, no. 7, pp. 6201-6213, Jul. 2020.
A. Mostaani, O. Simeone, S. Chatzinotas, and B. Ottersten, "Learningbased physical layer communications for multiagent collaboration," in Proc. IEEE 30th Annu. Int. Symp. Pers., Indoor Mobile Radio Commun. (PIMRC), 2019, pp. 1-6.
Q. Liu, L. Shi, L. Sun, J. Li, M. Ding, and F. Shu, "Path planning for UAV-mounted mobile edge computing with deep reinforcement learning," IEEE Trans. Veh. Technol., vol. 69, no. 5, pp. 5723-5728, May 2020.
J.-L. Wang, Y.-R. Li, A. B. Adege, L.-C. Wang, S.-S. Jeng, and J.-Y. Chen, "Machine learning based rapid 3D channel modeling for UAV communication networks," in Proc. 16th IEEE Annu. Consum. Commun. Netw. Conf. (CCNC), 2019, pp. 1-5.
W. Xia et al., "Generative neural network channel modeling for Millimeter-wave UAV communication," 2020, arXiv:2012.09133.
Y. Zhang, J. Wen, G. Yang, Z. He, and X. Luo, "Air-to-air path loss prediction based on machine learning methods in urban environments," Wireless Commun. Mobile Comput., vol. 2018, Jun. 2018, Art. no. 8489326.
G. Yang, Y. Zhang, Z. He, J. Wen, Z. Ji, and Y. Li, "Machinelearning- based prediction methods for path loss and delay spread in air-to-ground millimetre-wave channels," IET Microw. Antennas Propag., vol. 13, no. 8, pp. 1113-1121, 2019.
S. Bouchired, D. Roviras, and F. Castanié, "Equalisation of satellite mobile channels with neural network techniques," Space Commun., vol. 15, no. 4, pp. 209-220, 1998.
F. Meng, P. Chen, L. Wu, and X. Wang, "Automatic modulation classification: A deep learning enabled approach," IEEE Trans. Veh. Technol., vol. 67, no. 11, pp. 10760-10772, Nov. 2018.
T. Gruber, S. Cammerer, J. Hoydis, and S. T. Brink, "On deep learningbased channel decoding," in Proc. 51st Annu. Conf. Inf. Sci. Syst. (CISS), 2017, pp. 1-6.
A. S. Li, V. Chirayath, M. Segal-Rozenhaimer, J. L. Torres-Pérez, and J. V. D. Bergh, "NASA NeMO-net's convolutional neural network: Mapping marine habitats with spectrally heterogeneous remote sensing imagery," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 13, pp. 5115-5133, Aug. 2020.
F. Tang et al., "On removing routing protocol from future wireless networks: A real-time deep learning approach for intelligent traffic control," IEEE Wireless Commun., vol. 25, no. 1, pp. 154-160, Feb. 2018.
T. M. Hoang, N. M. Nguyen, and T. Q. Duong, "Detection of eavesdropping attack in UAV-aided wireless systems: Unsupervised learning with one-class SVM and K-means clustering," IEEE Wireless Commun. Lett., vol. 9, no. 2, pp. 139-142, Feb. 2020.
L. Ziluan and L. Xin, "Short-term traffic forecasting based on principal component analysis and a generalized regression neural network for satellite networks," J. China Univ. Posts Telecommun., vol. 25, no. 1, pp. 15-28, 2018.
W. Wang, A. Liu, Q. Zhang, L. You, X. Gao, and G. Zheng, "Robust multigroup multicast transmission for frame-based multi-beam satellite systems," IEEE Access, vol. 6, pp. 46074-46083, 2018.
M. Sadeghi and E. G. Larsson, "Physical adversarial attacks against end-to-end autoencoder communication systems," IEEE Commun. Lett., vol. 23, no. 5, pp. 847-850, May 2019.
A. Felix, S. Cammerer, S. Dörner, J. Hoydis, and S. Ten Brink, "OFDM-autoencoder for end-to-end learning of communications systems," in Proc. IEEE 19th Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), 2018, pp. 1-5.
Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, and P. Viswanath, "Turbo autoencoder: Deep learning based channel codes for point-topoint communication channels," 2019, arXiv:1911.03038.
S. Al-Emadi, A. Al-Ali, A. Mohammad, and A. Al-Ali, "Audio based drone detection and identification using deep learning," in Proc. 15th Int. Wireless Commun. Mobile Comput. Conf. (IWCMC), 2019, pp. 459-464.
L. P. Osco et al., "A review on deep learning in UAV remote sensing," 2021, arXiv:2101.10861.
R. Opromolla, G. Inchingolo, and G. Fasano, "Airborne visual detection and tracking of cooperative UAVs exploiting deep learning," Sensors, vol. 19, no. 19, p. 4332, 2019.
T. Bao, J. Zhu, H.-C. Yang, and M. O. Hasna, "Secrecy outage performance of ground-to-air communications with multiple aerial eavesdroppers and its deep learning evaluation," IEEE Wireless Commun. Lett., vol. 9, no. 9, pp. 1351-1355, Sep. 2020.
F. Vannella, G. Iakovidis, E. Al Hakim, E. Aumayr, and S. Feghhi, "Remote electrical tilt optimization via safe reinforcement learning," in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), 2021, pp. 1-7.
G. N. Seetanadi and K.-E. Årzén, "Routing using safe reinforcement learning," in Proc. 2nd Workshop Fog Comput. IoT (Fog-IoT), 2020, pp. 1-8.
J. Garcia and F. Fernández, "A comprehensive survey on safe reinforcement learning," J. Mach. Learn. Res., vol. 16, no. 1, pp. 1437-1480, 2015.
S. Lange, T. Gabel, and M. Riedmiller, "Batch reinforcement learning," in Reinforcement Learning. Berlin, Germany: Springer, 2012, pp. 45-73.
H. Le, C. Voloshin, and Y. Yue, "Batch policy learning under constraints," in Proc. Int. Conf. Mach. Learn., 2019, pp. 3703-3712.
R. Munos, T. Stepleton, A. Harutyunyan, and M. G. Bellemare, "Safe and efficient off-policy reinforcement learning," 2016, arXiv:1606.02647.
S. Fujimoto, D. Meger, and D. Precup, "Off-policy deep reinforcement learning without exploration," in Proc. Int. Conf. Mach. Learn., 2019, pp. 2052-2062.
"6G the next hyper-connected experience for all." Samsung. 2022. [Online]. Available: https://news.samsung.com/global/samsungs-6gwhite- paper-lays-outthe-companys-vision-for-the-next-generation-ofcommunicationstechnology
A. Azari, F. Ghavimi, M. Ozger, R. Jantti, and C. Cavdar, "Machine learning assisted handover and resource management for cellular connected drones," 2020, arXiv:2001.07937.
J.-H. Lee, J. Park, M. Bennis, and Y.-C. Ko, "Integrating LEO satellite and UAV relaying via reinforcement learning for non-terrestrial networks," 2020, arXiv:2005.12521.
A. Yazar, S. Dogan-Tusha, and H. Arslan, "6G vision: An ultra-flexible perspective," ITU J. Future Evol. Technol., vol. 2020, no. 1, pp. 1-20, 2020. [Online]. Available: https://tools.ietf.org/html/rfc3135
F. Mendoza, R. Ferrus, and O. Sallent, "Experimental proof of concept of an SDN-based traffic engineering solution for hybrid satelliteterrestrial mobile backhauling," Int. J. Satell. Commun. Netw., vol. 37, no. 6, pp. 1-16, 2019.
I. F. Akyildiz, P. Wang, and S.-C. Lin, "SoftAir: A software defined networking architecture for 5G wireless systems," Comput. Netw., vol. 85, pp. 1-18, Jul. 2015.
T. Ahmed, E. Dubois, J.-B. Dupé, R. Ferrús, P. Gélard, and N. Kuhn, "Software-defined satellite cloud RAN," Int. J. Satell. Commun. Netw., vol. 36, no. 1, pp. 108-133, 2018.
B. Prakash and R. Tholeti, Handbook of Fiber Optic Data Communication: Chapter 16, Hypervisors, Virtualization, and Networking, 4th ed. Cambridge, MA, USA: Academic Press, 2013.
J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz, J. Lorca, and J. Folgueira, "Network slicing for 5G with SDN/NFV: Concepts, architectures and challenges," IEEE Commun. Mag., vol. 55, no. 5, pp. 80-87, May 2017.
H. Khalili et al., "Benefits and challenges of software defined satellite- 5G communication," in Proc. 15th Annu. Conf. Wireless On-Demand Netw. Syst. Serv. (WONS), 2019, pp. 1-4.
K. Liolis, J. Cahill, E. Higgins, M. Corici, E. Troudt, and P. Sutton, "Over-the-air demonstration of satellite integration with 5G core network and multi-access edge computing use case," in Proc. IEEE 2nd 5G World Forum (5GWF), 2019, pp. 1-5.
M. Bacco et al., "Networking challenges for non-terrestrial networks exploitation in 5G," in Proc. IEEE 2nd 5G World Forum (5GWF), 2019, pp. 623-628.
A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, "TCP extensions for multipath operation with multiple addresses," IETF, RFC 8684, 2020. [Online]. Available: https://www.rfc-editor.org/info/rfc8684
F. Peng, Á. S. Cardona, K. Shafiee, and V. C. M. Leung, "TCP performance evaluation over GEO and LEO satellite links between performance enhancement proxies," in Proc. IEEE Veh. Technol. Conf. (VTC Fall), 2012, pp. 1-5.
J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby, "Performance enhancing proxies intended to mitigate link-related degradations," IETF, RFC 3135, 2001. [Online]. Available: https://tools. ietf.org/html/rfc3135
T. D. Cola et al., "Network and protocol architectures for future satellite systems," Foundations Trends Netw., vol. 2, nos. 1-2, pp. 1-161, 2017.
A. Kyrgiazos, B. G. Evans, and P. Thompson, "On the gateway diversity for high throughput broadband satellite systems," IEEE Trans. Wireless Commun., vol. 13, no. 10, pp. 5411-5426, Oct. 2014.
Q. Chen, G. Giambene, L. Yang, C. Fan, and X. Chen, "Analysis of inter-satellite link paths for LEO mega-constellation networks," IEEE Trans. Veh. Technol., vol. 70, no. 3, pp. 2743-2755, Mar. 2021.
R. Radhakrishnan, W. W. Edmonson, F. Afghah, R. M. Rodriguez- Osorio, F. Pinto, and S. C. Burleigh, "Survey of inter-satellite communication for small satellite systems: Physical layer to network layer view," IEEE Commun. Surveys Tuts., vol. 18, no. 4, pp. 2442-2473, 4th Quart., 2016.
"How it works: The technology behind satellite Internet." Viasat. 2020. [Online]. Available: https://www.viasat.com/about/newsroom/ blog/how-it-works-the-technology-behind-satellite-internet/
"How does satellite Internet work?" HughesNet. Accessed: May 2021. [Online]. Available: https://www.hughesnet.com/about/how-it-works
"Building communications networks in the stratosphere." Facebook. 2015. [Online]. Available: https://code.facebook.com/ posts/993520160679028/building-communications-networks-in-thestratosphere/
"Balloon-powered Internet for everyone." Google. Accessed: May 2021. [Online]. Available: https://www.google.com/intl/en- US/loon/
"Network." OneWeb. Accessed: May 2021. [Online]. Available: https:// www.oneweb.world/network
"ELO: Eutelsat LEO for objects." Eutelsat. Accessed: May 2021. [Online]. Available: https://www.eutelsat.com/en/satellites/leo-fleet. html
"F-cell technology from Nokia bell labs revolutionizes small cell deployment by cutting wires, costs and time." Nokia. 2016. [Online]. Available: https://www.nokia.com/about-us/news/releases/2016/10/ 03/f-cell-technology-from-nokia-bell-labs-revolutionizes-small-celldeployment- by-cutting-wires-costs-and-time
LTE Unmanned Aircraft Systems, Trial Report, Qualcomm Technol. Inc., San Diego, CA, USA, 2017.
"Deployable network on drone." Ericsson. Accessed: May 2021. [Online]. Available: https://www.ericsson.com/en/mission-criticalcommunications
"Unmanned aircraft systems (UAS) drone flights." NASA. Accessed: May 2021. [Online]. Available: https://www.nasa.gov/subject/9566/ unmanned-aircraft/
"High-altitude pseudo-satellites for telecommunication and complementary space applications." HAPS-TELEO. 2018. [Online]. Available: https://nebula.esa.int/sites/default/files/neb_study/2470/ C4000118800ExS.pdf
"Stratospheric platforms." Accessed: May 2021. [Online]. Available: https://www.stratosphericplatforms.com/
"5G METEORS." Accessed: May 2021. [Online]. Available: https:// 5gmeteors.eurescom.eu/
"First software-defined 5G new radio demonstration over GEO satellite." Fraunhofer-IIS. 2021. [Online]. Available: https://www.iis. fraunhofer.de/en/pr/2021/20210312-5G_new_radio.html
"Integrating SATCOM into 5G." SAT5G. Accessed: May 2021. [Online]. Available: https://www.sat5g-project.eu/
"Limassol platform." 5GENESIS. Accessed: May 2021. [Online]. Available: https://5genesis.eu/limassol-platform/
"5G AgiLe and fLexible integration of SaTellite and cellulaR." 5G ALLSTAR. 2022. [Online]. Available: https://5g-allstar.eu/
"Thales Alenia space partners with KT SAT for the 5G satellite backhauling demonstration." 2021. [Online]. Available: https://www. thalesgroup.com/en/worldwide/space/press-release/thales-alenia-spacepartners- kt-sat-5g-satellite-backhauling#main-content
"High altitude pseudo-satellites: Proposal of initiatives to enhance satellite telecommunications." HAPPIEST. 2017. [Online]. Available: https://nebula.esa.int/sites/default/files/neb_study/1284/ C4000117605ExS.pdf
"5G!drones-EU H2020 project." Accessed: May 2021. [Online]. Available: https://5gdrones.eu
"Demonstrator for satellite-terrestrial integration in the 5G context." SATis5. 2020. [Online]. Available: https://satis5.eurescom.eu/
"CLOUDSAT scenarios for integration of satellite components in future networks." CLOUDSAT. 2015. [Online]. Available: https://artes.esa.int/ projects/cloudsat
"5G enabled ground segment technologies over the air demonstrator." 5G-GOA. 2022. [Online]. Available: https://artes.esa.int/projects/5ggoa
"5GDIVE: Edge intelligence for vertical experimentation." 2021. [Online]. Available: https://5g-dive.eu/
"Machine learning and artificial intelligence for satellite communication." SATAI. 2020. [Online]. Available: https://artes.esa.int/projects/ satai
"Machine learning and artificial intelligence for satellite communication." MLSAT. 2020. [Online]. Available: https://artes.esa.int/projects/ mlsat
"AI-powered ground segment control for flexible payloads." ATRIA. 2020. [Online]. Available: https://artes.esa.int/projects/mlsat
"Aerial experimentation and research platform for advance wireless." 2022. [Online]. Available: https://aerpaw.org/
C. Dixon and E. W. Frew, "Optimizing cascaded chains of unmanned aircraft acting as communication relays," IEEE J. Sel. Areas Commun., vol. 30, no. 5, pp. 883-898, Jun. 2012.
W. Guo, C. Devine, and S. Wang, "Performance analysis of micro unmanned airborne communication relays for cellular networks," in Proc. 9th Int. Symp. Commun. Syst., Netw. Digit. Sign (CSNDSP), 2014, pp. 658-663.
T. A. Johansen, A. Zolich, T. Hansen, and A. J. Sørensen, "Unmanned aerial vehicle as communication relay for autonomous underwater vehicle-Field tests," in Proc. IEEE Globecom Workshops (GC Wkshps), 2014, pp. 1469-1474.
Z. Liu, Y. Chen, B. Liu, C. Cao, and X. Fu, "HAWK: An unmanned mini-helicopter-based aerial wireless kit for localization," IEEE Trans. Mobile Comput., vol. 13, no. 2, pp. 287-298, Feb. 2014.
Z. Gong et al., "Design, analysis, and field testing of an innovative drone-assisted zero-configuration Localization framework for wireless sensor networks," IEEE Trans. Veh. Technol., vol. 66, no. 11, pp. 10322-10335, Nov. 2017.
C. Di Franco and G. Buttazzo, "Energy-aware coverage path planning of UAVs," in Proc. IEEE Int. Conf. Auton. Robot Syst. Competitions, 2015, pp. 111-117.
Z. M. Fadlullah, D. Takaishi, H. Nishiyama, N. Kato, and R. Miura, "A dynamic trajectory control algorithm for improving the communication throughput and delay in UAV-aided networks," IEEE Netw., vol. 30, no. 1, pp. 100-105, Jan./Feb. 2016.
J. Wigard, R. Amorim, H. C. Nguyen, I. Z. Kovács, and P. Mogensen, "Method for detection of airborne UEs based on LTE radio measurements," in Proc. IEEE 28th Annu. Int. Symp. Pers. Indoor Mobile Radio Commun. (PIMRC), 2017, pp. 1-6.
R. Amorim, J. Wigard, H. Nguyen, I. Z. Kovacs, and P. Mogensen, "Machine-learning identification of airborne UAV-UEs based on LTE radio measurements," in Proc. IEEE Globecom Workshops (GC Wkshps), 2017, pp. 1-6.
I. Bekmezci, I. Sen, and E. Erkalkan, "Flying ad hoc networks (FANET) test bed implementation," in Proc. 7th Int. Conf. Recent Adv. Space Technol. (RAST), 2015, pp. 665-668.
D. Popescu, F. Stoican, L. Ichim, G. Stamatescu, and C. Dragana, "Collaborative UAV-WSN system for data acquisition and processing in agriculture," in Proc. 10th IEEE Int. Conf. Intell. Data Acquisit. Adv. Comput. Syst. Technol. Appl. (IDAACS), vol. 1, 2019, pp. 519-524.
I. F. Akyildiz, A. Kak, and S. Nie, "6G and beyond: The future of wireless communications systems," IEEE Access, vol. 8, pp. 133995-134030, 2020.
C. De Lima et al., "Convergent communication, sensing and localization in 6G systems: An overview of technologies, opportunities and challenges," IEEE Access, vol. 9, pp. 26902-26925, 2021.
Z. Xiao and Y. Zeng, "An overview on integrated localization and communication towards 6G," 2020, arXiv:2006.01535.
M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi, "Toward 6G networks: Use cases and technologies," IEEE Commun. Mag., vol. 58, no. 3, pp. 55-61, Mar. 2020.
C. D'Andrea, A. Garcia-Rodriguez, G. Geraci, L. G. Giordano, and S. Buzzi, "Analysis of UAV communications in cell-free massive MIMO systems," IEEE Open J. Commun. Soc., vol. 1, pp. 133-147, 2020.
C. Braun, A. M. Voicu, L. Simić, and P. Mähönen, "Should we worry about interference in emerging dense NGSO satellite constellations?" in Proc. IEEE Int. Symp. Dyn. Spectr. Access Netw. (DySPAN), 2019, pp. 1-10.
A. Visweswaran et al., "A 28-nm-CMOS based 145-GHz FMCW radar: System, circuits, and characterization," IEEE J. Solid-State Circuits, vol. 56, no. 7, pp. 1975-1993, Jul. 2021.
A. Sakhnini, M. Guenach, A. Bourdoux, and S. Pollin, "A cramér- Rao lower bound for Analyzing the Localization performance of a multistatic joint radar-communication system," in Proc. 1st IEEE Int. Online Symp. Joint Commun. Sens. (JCS), 2021, pp. 1-5.
M. Lipka, S. Brückner, E. Sippel, and M. Vossiek, "On the needlessness of signal bandwidth for precise holographic wireless localization," in Proc. 17th Eur. Radar Conf. (EuRAD), 2021, pp. 202-205.
J. A. Zhang, X. Huang, Y. J. Guo, J. Yuan, and R. W. Heath, "Multibeam for joint communication and radar sensing using steerable analog antenna arrays," IEEE Trans. Veh. Technol., vol. 68, no. 1, pp. 671-685, Jan. 2019.
S. A. Hassani et al., "In-band full-duplex radar-communication system," IEEE Syst. J., vol. 15, no. 1, pp. 1086-1097, Mar. 2021.
T. Wild, V. Braun, and H. Viswanathan, "Joint design of communication and sensing for beyond 5G and 6G systems," IEEE Access, vol. 9, pp. 30845-30857, 2021.
H. Lu, Y. Zeng, S. Jin, and R. Zhang, "Aerial intelligent reflecting surface: Joint placement and passive Beamforming design with 3D beam flattening," IEEE Trans. Wireless Commun., vol. 20, no. 7, pp. 4128-4143, Jul. 2021.
S. Solanki, J. Park, and I. Lee, "On the performance of IRS-aided UAV networks with NOMA," IEEE Trans. Veh. Technol., vol. 71, no. 8, pp. 9038-9043, Aug. 2022.
S. Solanki, S. Gautam, S. K. Sharma, and S. Chatzinotas, "Ambient backscatter assisted co-existence in aerial-IRS wireless networks," IEEE Open J. Commun. Soc., vol. 3, pp. 608-621, 2022.
S. Alfattani et al., "Aerial platforms with reconfigurable smart surfaces for 5G and beyond," IEEE Commun. Mag., vol. 59, no. 1, pp. 96-102, Jan. 2021.
K. Tekbiyik, G. K. Kurt, A. R. Ekti, A. Görçin, and H. Yanikomeroglu, "Reconfigurable intelligent surfaces empowered THz communication in LEO satellite networks," 2021, arXiv:2007.04281.
P. Yang, Y. Xiao, M. Xiao, and S. Li, "6G wireless communications: Vision and potential techniques," IEEE Netw., vol. 33, no. 4, pp. 70-75, Jul./Aug. 2019.
Y. Wang, X. Ding, and G. Zhang, "A novel dynamic spectrum-sharing method for GEO and LEO satellite networks," IEEE Access, vol. 8, pp. 147895-147906, 2020.
M. Höyhtyä et al., "Database-assisted spectrum sharing in satellite communications: A survey," IEEE Access, vol. 5, pp. 25322-25341, 2017.
C. Yi et al., "Design and performance analysis of THz wireless communication systems for chip-to-chip and personal area networks applications," IEEE J. Sel. Areas Commun., vol. 39, no. 6, pp. 1785-1796, Jun. 2021.
K. Tekbiyik, A. R. Ekti, G. K. Kurt, A. Gorcin, and H. Yanikomeroglu, "A holistic investigation of terahertz propagation and channel modeling toward vertical heterogeneous networks," IEEE Commun. Mag., vol. 58, no. 11, pp. 14-20, Nov. 2020.
J. Du, C. Jiang, Q. Guo, M. Guizani, and Y. Ren, "Cooperative earth observation through complex space information networks," IEEE Wireless Commun., vol. 23, no. 2, pp. 136-144, Apr. 2016.
T.-Y. Tung, S. Kobus, J. R. Pujol, and D. Gunduz, "Effective communications: A joint learning and communication framework for multi-agent reinforcement learning over noisy channels," 2021, arXiv:2101.10369.
L. Jiang, G. Cui, S. Liu, W. Wang, D. Liu, and Y. Chen, "Cooperative relay assisted load balancing scheme based on Stackelberg game for hybrid GEO-LEO satellite network," in Proc. Int. Conf. Wireless Commun. Signal Process. (WCSP), 2015, pp. 1-5.
F. Tang, H. Zhang, and L. T. Yang, "Multipath cooperative routing with efficient acknowledgement for LEO satellite networks," IEEE Trans. Mobile Comput., vol. 18, no. 1, pp. 179-192, Jan. 2019.
R. Picchi, F. Chiti, R. Fantacci, and L. Pierucci, "Towards quantum satellite internetworking: A software-defined networking perspective," IEEE Access, vol. 8, pp. 210370-210381, 2020.
Y.-A. Chen et al., "An integrated space-to-ground quantum communication network over 4, 600 kilometres," Nature, vol. 589, no. 7841, pp. 214-219, 2021.
O. S. Oubbati, M. Atiquzzaman, T. A. Ahanger, and A. Ibrahim, "Softwarization of UAV networks: A survey of applications and future trends," IEEE Access, vol. 8, pp. 98073-98125, 2020.
J. Iyengar and M. Thomson, "QUIC: A UDP-based multiplexed and secure transport," IETF, Internet-Draft draft-ietf-quic-transport- 34, 2021. [Online]. Available: https://tools.ietf.org/html/draft-ietf-quictransport- 34
J. Iyengar and I. Sweett, "QUIC loss detection and congestion control," IETF, Internet-Draft draft-ietf-quic-recovery-34, 2021. [Online]. Available: https://tools.ietf.org/html/draft-ietf-quic-recovery-34
Y. Cui, T. Li, C. Liu, X. Wang, and M. Kühlewind, "Innovating transport with QUIC: Design approaches and research challenges," IEEE Internet Comput., vol. 21, no. 2, pp. 72-76, Mar/Apr. 2017.
A. Langley et al., "The QUIC transport protocol: Design and Internetscale deployment," in Proc. ACM Conf. Appl. Technol. Archit. Protocols Comput. Commun. (SIGCOMM), 2017, pp. 183-196.