[en] We propose a traffic-oriented beam-layout optimization framework for a medium Earth orbit (MEO) high throughput satellite (HTS) system. The designed beam-layout plans have the objective of dynamic traffic load balancing with minimal radio resource management. We model and evaluate the high directivity and the high reconfigurability capabilities of next-generation HTS systems that are equipped with a processing power on board. The resulting payload flexibility is compared numerically against the on-ground counterpart. Adequate key performance indicators, such as the Jain’s fairness index, the load distribution gap and optimization convergence time, are used to benchmark the system against state-of-the-art solutions. Results show that a dynamic HTS in MEO is capable of efficiently attaining high quality load balancing performance under realistic spatiotemporally varying traffic demands.