[en] Learn to solve the unprecedented challenges facing Online Learning and Adaptive Signal Processing in this concise, intuitive text. The ever-increasing amount of data generated every day requires new strategies to tackle issues such as: combining data from a large number of sensors; improving spectral usage, utilizing multiple-antennas with adaptive capabilities; or learning from signals placed on graphs, generating unstructured data. Solutions to all of these and more are described in a condensed and unified way, enabling you to expose valuable information from data and signals in a fast and economical way. The up-to-date techniques explained here can be implemented in simple electronic hardware, or as part of multi-purpose systems. Also featuring alternative explanations for online learning, including newly developed methods and data selection, and several easily implemented algorithms, this one-of-a-kind book is an ideal resource for graduate students, researchers, and professionals in online learning and adaptive filtering.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Diniz, Paulo S. R.; Federal University of Rio de Janeiro
de Campos, Marcello L. R.; Federal University of Rio de Janeiro
ALVES MARTINS, Wallace ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Lima, Markus V. S.; Federal University of Rio de Janeiro
Apolinário Jr., José A.; Instituto Militar de Engenharia
A. H. Sayed, Fundamentals of Adaptive Filtering (Wiley, Hoboken, 2003).
P. S. R. Diniz and B. Widrow, History of Adaptive Filters, in A Short History of Circuits and Systems, F. Maloberti and A. C. Davies (eds.) (River Publishers, Delft, 2016).
B. Widrow and D. Park, History of Adaptive Signal Processing: Widrow’s Group, in A Short History of Circuits and Systems, F. Maloberti and A. C. Davies (eds.) (River Publishers, Delft, 2016).
C. F. Gauss, Theoria Combinationis Observationum Erroribus Minimis Obnoxiae: Pars Prior, Pars Posterior, Supplementum (Theory of the Combination of Observations Least Subject to Errors: Part One, Part Two, Supplement), in Classics in Applied Mathematics, G. W. Stewart (ed.) (SIAM, Philadelphia, 1995).
J. A. Apolinario Jr.(ed.), QRD-RLS Adaptive Filtering (Springer, New York, 2009).
F. T. Castoldi and M. L. R. de Campos, Application of a Minimum-Disturbance Description to Constrained Adaptive Filters, IEEE Signal Processing Letters 20, pp. 1215–1218 (2013).
K. Ozeki, Theory of Affine Projection Algorithms for Adaptive Filtering (Springer, New York, 2016).
S. Werner, J. A. Apolinário Jr., and P. S. R. Diniz, Set Membership Proportionate Affine Projection Algorithms, EURASIP Journal on Audio, Speech, and Music Processing 2007, pp. 1–10 (2007).
S. Nagaraj, S. Gollamudi, S. Kapoor, and Y.-F. Huang, BEACON: An Adaptive Set-Membership Filtering Technique with Sparse Updates, IEEE Transactions on Signal Processing 47, pp. 2928–2941 (1999).
R. C. de Lamare and P. S. R. Diniz, Set-Membership Filtering Adaptive Algorithms Based on Time-Varying Error Bounds for CDMA Interference Suppression, IEEE Transactions on Vehicular Technology 58, pp. 644–654 (2009).
P. S. R. Diniz, On Data-Selective Adaptive Filtering, IEEE Transactions on Signal Processing 66, pp. 4239–4252 (2018).
F. Bouteille, P. Scalart, and M. Corazza, Pseudo Affine Projection Algorithm New Solution for Adaptive Identification. Proceedings of European Conference on Speech Communication and Technology, 1999, Vol. 1, pp. 427–430.
F. Albu, M. Bouchard, and Y. Zakharov, Pseudo-Affine Projection Algorithms for Multichannel Active Noise Control, IEEE Transactions on Audio, Speech, and Language Processing 15, pp. 1044–1052 (2007).
J. Nagumo and A. Noda, A Learning Method for System Identification, IEEE Transactions on Automatic Control 12, pp. 282–287 (1967).
A. E. Albert and L. S. Gardner Jr., Stochastic Approximation and Nonlinear Regression (MIT Press, Cambridge, MA, 1967).
B. Widrow and M. E. Hoff, Adaptive Switching Circuits, IRE WESCON Convention Record, 4, pp. 96–104 (1960).
S. Gollamudi, S. Nagaraj, S. Kapoor, and Y.-F. Huang, Set-Membership Filtering and a Set-Membership Normalized LMS Algorithm with an Adaptive Step Size, IEEE Signal Processing Letters 5, pp. 111–114 (1998).
P. S. R. Diniz and S. Werner, Set-Membership Binormalized Data Reusing LMS Algorithms, IEEE Transactions on Signal Processing 51, pp. 124–134 (2003).
S. Werner and P. S. R. Diniz, Set-Membership Affine Projection Algorithm, IEEE Signal Processing Letters 8, pp. 231–235 (2001).
M. V. S. Lima, T. N. Ferreira, W. A. Martins, and P. S. R. Diniz, Sparsity-Aware Data-Selective Adaptive Filters, IEEE Transactions on Signal Processing 62, pp. 4557–4572 (2014).
T. N. Ferreira, W. A. Martins, M. V. S. Lima, and P. S. R. Diniz, Convex Combination of Constraint Vectors for Set-Membership Affine Projection Algorithms. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2019), Brighton, UK, 2019, pp. 4858–4862.
P. S. R. Diniz, H. Yazdanpanah, and M. V. S. Lima, Feature LMS algorithms. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2018), Calgary, AB, 2018, pp. 4144–4148.
H. Yazdanpanah, P. S. R. Diniz, and M. V. S. Lima, Feature adaptive filtering: Exploiting hidden sparsity, IEEE Transactions on Circuits and Systems I: Regular Papers 67, pp. 2358–2371 (2020).
H. Yazdanpanah and J. A. Apolinario Jr., The extended feature LMS algorithm: Exploiting hidden sparsity for systems with unknown spectrum, Circuits, Systems, and Signal Processing 40, pp. 174–192 (2021).
D. B. Haddad, L. O. dos Santos, L. F. Almeida, G. A. S. Santos, and M. R. Petraglia, £2-norm feature least mean square algorithm, Electronics Letters 56, pp. 516–519 (2020).
P. S. R. Diniz, H. Yazdanpanah, and M. V. S. Lima, Feature LMS algorithm for bandpass system models. Proceedings of the 27th European Signal Processing Conference (EUSIPCO), A Coruna, Spain, 2019, pp. 1–5.
H. Yazdanpanah, P. S. R. Diniz, and M. V. S. Lima, Low-complexity feature stochastic gradient algorithm for block-lowpass systems, IEEE Access 7, 141587– 141593 (2019).
C. M. Bishop, Pattern Recognition and Machine Learning (Springer, New York, 2006).
L. N. Trefethen and D. Bau, III, Numerical Linear Algebra (SIAM, Philadelphia, 1997).
M. V. S. Lima, G. S. Chaves, T. N. Ferreira, and P. S. R. Diniz, Do proportionate algorithms exploit sparsity?, ArXiv: 2108.06846.
T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed. (Springer, New York, 2017).
M. V. S. Lima, T. N. Ferreira, W. A. Martins, and P. S. R. Diniz, Sparsity-aware data-selective adaptive filters, IEEE Transactions on Signal Processing 62, pp. 4557–4572 (2014).
Y. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications (Cambridge University Press, Cambridge, 2012).
N. Bourbaki, Topological Vector Spaces (Springer, New York, 1987).
G. Kothe, Topological Vector Spaces I (Springer, New York, 1983).
J. F. Claerbout and F. Muir, Robust modeling with erratic data, Geophysics 38, pp. 826–844 (1973).
F. Santosa and W. W. Symes, Linear inversion of band-limited reflection seismograms, SIAM Journal on Scientific Computing 7, pp. 1307–1330 (1986).
S. S. Chen, D. L. Donoho, and M. A. Saunders, Atomic decomposition by basis pursuit, SIAM Journal on Scientific Computing 20, pp. 33–61 (1998).
R. Tibshirani, Regression shrinkage and selection via the Lasso, Journal of the Royal Statistical Society, Series B (Methodological) 58, pp. 267–288 (1996).
E. J. Candès and M. B. Wakin, An introduction to compressive sampling, IEEE Signal Processing Magazine 25, pp. 21–30 (2008).
E. J. Candès, M. B. Wakin, and S. P. Boyd, Enhancing sparsity by reweighted £1 minimization, Journal of Fourier Analysis and Applications 14, pp. 877–905 (2008).
M. V. S. Lima, W. A. Martins, and P. S. R. Diniz, Affine projection algorithms for sparse system identification. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2013), Vancouver, Canada, May 2013, pp. 5666–5670.
L. Mancera and J. Portilla, L0-norm-based sparse representation through alternate projections. Proceedings of the IEEE International Conference on Image Processing (ICIP 2006), Atlanta, GA, USA, October 2006, pp. 2089–2092.
Y. Chen, Y. Gu, and A. O. Hero, Sparse LMS for system identification. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2009), Taipei, Taiwan, April 2009, pp. 3125–3128.
J. Trzasko and A. Manduca, Highly undersampled magnetic resonance image reconstruction via homotopic £0-minimization, IEEE Transactions on Medical Imaging 28, 106–121 (2009).
Y. Gu, J. Jin, and S. Mei, £0 norm constraint LMS algorithm for sparse system identification, IEEE Signal Processing Letters 16, pp. 774–777 (2009).
P. Huber, Robust Statistics (Wiley, New York, 1981).
D. Geman and G. Reynolds, Nonlinear image recovery with half-quadratic regularization, IEEE Transactions on Image Processing 4, 932–946 (1995).
M. V. S. Lima, I. Sobron, W. A. Martins, and P. S. R. Diniz, Stability and MSE analyses of affine projection algorithms for sparse system identification. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2014), Florence, Italy, May 2014, pp. 6399–6403.
H. Mohimani, M. Babaie-Zadeh, and C. Jutten, A fast approach for overcomplete sparse decomposition based on smoothed £0 norm, IEEE Transactions on Signal Processing 57, 289–301 (2009).
P. S. R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation, 5th ed. (Springer, New York, 2020).
R. Meng, R. C. de Lamare, and V. H. Nascimento, Sparsity-aware affine projection adaptive algorithms for system identification. Proceedings of the Sensor Signal Processing for Defense (SSPD 2011), London, UK, September 2011, pp. 1–5.
H. Yazdanpanah and P. S. R. Diniz, Recursive least-squares algorithms for sparse system modeling. Proceedings of the 2017 IEEE International Conference on Acoustics Speech and Signal Processing, New Orleans, LA, March 2017, pp. 3878–3883.
H. Yazdanpanah, M. V. S. Lima, and P. S. R. Diniz, On the robustness of set membership adaptive filtering algorithms, EURASIP Journal on Advances in Signal Processing 2017, pp. 1–12 (2017).
P. L. Combettes, The foundations of set theoretic estimation, Proceedings of the IEEE 81, pp. 182–208 (1993).
M. V. S. Lima and P. S. R. Diniz, Fast learning set theoretic estimation. Proceedings of the 21st European Signal Processing Conference (EUSIPCO), Marrakesh, Morocco, 2013, pp. 1–5.
H. Yazdanpanah, J. A. Apolinário Jr., P. S. R. Diniz, and M. V. S. Lima, £0-norm feature LMS algorithms. Proceedings of the IEEE Global Conference on Signal and Information Processing (GlobalSIP), Anaheim, CA, USA, 2018, pp. 311–315.
H. Yazdanpanah, A. Carini, and M. V. S. Lima, L0-norm adaptive Volterra filters. Proceedings of the 27th European Signal Processing Conference (EUSIPCO), A Coruna, Spain, 2019, pp. 1–5.
V. Mathews and G. Sicuranza, Polynomial Signal Processing (Wiley, New York, 2000).
A. Fermo, A. Carini, and G. L. Sicuranza, Low complexity nonlinear adaptive filters for acoustic echo cancellation, European Transactions on Telecommunications 14, pp. 161–169 (2003).
M. Mohri, A. Rostamizadeh, and A. Tawalkar, Foundations of Machine Learning, 2nd ed. (MIT Press, Cambridge, USA, 2018).
C. C. Aggarwal, Neural Networks and Deep Learning (Springer, Switzerland, 2018).
R. A. do Prado, R. M. Guedes, F. R. Henriques, F. M. da Costa, L. D. T. J. Tarrataca, and D. B. Haddad, On the analysis of the incremental £0-LMS algorithm for distributed systems, Circuits, Systems, and Signal Processing 40, pp. 845–871 (2021).
S. Jiang and Y. Gu, Block-sparsity-induced adaptive filter for multi-clustering system identification, IEEE Transactions on Signal Processing 63, pp. 5318–5330 (2015).
Y. Li, Z. Jiang, Z. Jin, X. Han, and J. Yin, Cluster-sparse proportionate NLMS algorithm with the hybrid norm constraint, IEEE Access 6, pp. 47794–47803 (2018).
D. L. Duttweiler, Proportionate normalized least-mean-squares adaptation in echo cancelers, IEEE Transactions on Speech and Audio Processing 8, pp. 508– 518 (2000).
J. Benesty and S. L. Gay, An improved PNLMS algorithm. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2002), Dallas, USA, May 2002, pp. 1881–1884.
H. Deng and M. Doroslovacki, Improving convergence of the PNLMS algorithm for sparse impulse response identification, IEEE Signal Processing Letters 12, pp. 181–184 (2005).
E. Hansler and G. Schmidt, Acoustic Echo and Noise Control: A Practical Approach (Wiley, Hoboken, 2004).
L. Ligang, M. Fukumoto, and S. Saiki, An improved mu-law proportionate NLMS algorithm. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2008), 2008 pp. 3797–3800.
S. Werner, J. A. Apolinário Jr., P. S. R. Diniz, and T. I. Laakso, A set membership approach to normalized proportionate adaptation algorithms. Proceeding of the European Signal Processing Conference (EUSIPCO 2005), Antalya, Turkey, September 2005, pp. 1–4.
M. V. S. Lima and P. S. R. Diniz, Steady-state MSE performance of the setmembership affine projection algorithm, Circuits, Systems, and Signal Processing 32, pp. 1811–1837 (2013).
P. A. Naylor, J. Cui, and M. Brookes, Adaptive algorithms for sparse echo cancellation, Signal Processing 86, pp. 1182–1192 (2006).
F. C. de Souza, O. J. Tobias, R. Seara, and D. R. Morgan, A PNLMS algorithm with individual activation factors, IEEE Transactions on Signal Processing 58, pp. 2036–2047 (2010).
F. C. de Souza, R. Seara, and D. R. Morgan, An enhanced IAF-PNLMS adaptive algorithm for sparse impulse response identification, IEEE Transactions on Signal Processing 60, pp. 3301–3307 (2012).
A. W. H. Khong and P. A. Naylor, Efficient use of sparse adaptive filters. Proceedings of the Fortieth Asilomar Conference on Signals, Systems and Computers (ACSSC 2006), 2006, pp. 1375–1379.
C. Paleologu, S. Ciochina, and J. Benesty, An efficient proportionate affine projection algorithm for echo cancellation, IEEE Signal Processing Letters 17, pp. 165–168 (2010).
Z. Zheng, Z. Liu, and Y. Dong, Steady-State and Tracking Analyses of the Improved Proportionate Affine Projection Algorithm, IEEE Transactions on Circuits and Systems II: Express Briefs 65, pp. 1793–1797 (2018).
R. Arablouei, K. Dogaņcay and S. Perreau, Proportionate affine projection algorithm with selective projections for sparse system identification. Proceedings of the Asia-Pacific Signal Information Processing Association Annual Summit Conference, 2010, pp. 362–366.
J. V. G. de Souza, D. B. Haddad, F. R. Henriques, and M. R. Petraglia, Novel proportionate adaptive filters with coefficient vector reusing, Circuits, Systems, and Signal Processing 39, pp. 2473–2488 (2020).
S. Werner, J. A. Apolinário Jr., and P. S. R. Diniz, Set-membership proportionate affine projection algorithms, EURASIP Journal on Audio, Speech, and Music Processing 2007, pp. 1–10 (2007).
H. Yazdanpanah, P. S. R. Diniz, and M. V. S. Lima, Improved simple setmembership affine projection algorithm for sparse system modelling: Analysis and implementation, IET Signal Processing 14, pp. 81–88 (2020).
K. Nose-Filho, A. K. Takahata, R. Lopes, and J. M. T. Romano, Improving sparse multichannel blind deconvolution with correlated seismic data: Foundations and further results, IEEE Signal Processing Magazine 35, pp. 41–50 (2018).
Y. Kopsinis, K. Slavakis, and S. Theodoridis, Online sparse system identification and signal reconstruction using projections onto weighted l1 balls, IEEE Transactions on Signal Processing 59, pp. 936–952 (2011).
K. S. Olinto, D. B. Haddad, and M. R. Petraglia, Transient analysis of £0-LMS and £0-NLMS algorithms, Signal Processing 127, pp. 217–226 (2016).
M. Pereyra et al., A survey of stochastic simulation and optimization methods in signal processing, IEEE Journal of Selected Topics in Signal Processing 10, pp. 224–241 (2016).
S. Chouvardas, K. Slavakis, Y. Kopsinis, and S. Theodoridis, A sparsity promoting adaptive algorithm for distributed learning, IEEE Transactions on Signal Processing 60, pp. 5412–5425 (2012).
T. N. Ferreira, M. V. S. Lima, W. A. Martins, and P. S. R. Diniz, Low complexity proportionate algorithms with sparsity-promoting penalties. Proceedings of the 2016 IEEE International Symposium on Circuits and Systems, Montreal, Canada, May 2016, pp. 253–256.
N. Aronszajn, Theory of reproducing kernels. Transactions of the American Mathematical Society 63, pp. 337–404 (1950).
M. A. Aizerman, E. M. Braverman, and L. I. Rozoner, Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control 25, pp. 821–837 (1964).
V. Vapnik, The Nature of Machine Learning, 2nd ed. (Springer, New York, 1999).
V. Vapnik, Statistical Learning Theory (Wiley Interscience, New York, 1998).
S. Mallat, A Wavelet Tour of Signal Processing (Academic Press, Burlington, 2009).
P. S. R. Diniz, Adaptive Filtering: Algorithms and Practical Implementations, 5th ed. (Springer, Cham, 2020).
W. Liu, P.P. Pokharel, and J.C. Príncipe, The kernel least-mean-square algorithm. IEEE Transactions on Signal Processing. 56, pp. 543–554 (2008).
W. Liu, J.C. Príncipe, S. Haykin, Kernel Adaptive Filtering: A Comprehensive Introduction (Wiley, Hoboken, 2010).
C. Bishop, Pattern Recognition and Machine Learning (Springer, New York, 2007).
B. Schölkopf and A. L. Smola, Learning with Kernels: Support Vector Machine, Regularization, Optimization and Beyond (The MIT Press, Cambridge, 2001).
K. P. Murphy, Machine Learning: A Probabilistic Perspective (The MIT Press, Cambridge, 2012).
S. Theodoridis, Machine Learning: A Bayesian and Optimization Perspective (Academic Press, Oxford, 2015).
Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning from Data (AMLbook.com, 2012).
C. Richard, J. C. M. Bermudez, and P. Honeine, Online prediction of time series data with kernels. IEEE Transactions on Signal Processing 57, pp. 1058–1067 (2009).
W. D. Parreira, J. C. M. Bermudez, C. Richard, and J.-Y. Tourneret, Stochastic behavior analysis of the Gaussian kernel least-mean-square algorithm. IEEE Transactions on Signal Processing 60, pp. 2208–2222 (2012).
K. Ozeki, Theory of Affine Projection Algorithms for Adaptive Filtering (Springer, New York, 2015).
F. Albu, D. Coltuc, M. Rotaru, and K. Nishikawa, An efficient implementation of the kernel affine projection algorithm. 8th International Symposium on Image and Signal Processing and Analysis (ISPA 2013), Trieste, Italy, 2013, pp. 349–353.
P. Honeine, Approximation errors of online sparsification criteria. IEEE Transactions on Signal Processing 63, pp. 4700–4709 (2015).
Y. Engel, S. Mannor, and R. Meir, The kernel recursive least-squares algorithm. IEEE Transactions on Signal Processing 52, pp. 2275–2285 (2004).
S. Van Vaerenbergh, J. Vía, and I. Santamaría, A sliding-window kernel RLS and its application to nonlinear channel identification. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Toulouse, France, May 2006, pp. 789–792.
S. Van Vaerenbergh, J. Vía, and I. Santamaría, Nonlinear system identification using new sliding-window kernel RLS algorithm. Journal of Communications 2, pp. 1–8 (2007).
S. Van Vaerenbergh, I. Santamaría, W. Liu, and J. C. Príncipe, Fixed-budget kernel recursive least-squares. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Toulouse, France, May 2006, pp. V789–V792.
A. V. Malipatil, Y.-F. Huang, S. Andra, and K. Bennett, Kernelized setmembership approach to nonlinear adaptive filtering. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, USA, May 2005, pp. IV-149–IV-152.
A. Flores and R. C. de Lamare, Set-membership kernel adaptive algorithms. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, New Orleans, USA, May 2017, pp. 2676–2680.
K. Chen, S. Werner, A. Kuh, and Y.-F. Huang, Nonlinear adaptive filtering with kernel set-membership approach. IEEE Transactions on Signal Processing 68, pp. 1515–1528 (2020).
A. Rahimi and B. Recht, Random features for large-scale kernel machines. NIPS’07: Proceedings of the 20th International Conference on Neural Information Processing Systems, Curran Associates, Inc., 2008, pp. 1–8.
B. K. Sriperumbudur and Z. Szabó, Optimal rates for random Fourier features. NIPS’15: Proceedings of the 28th International Conference on Neural Information Processing Systems, pp. 1144–1152.
D. J. Sutherland and J. Schneider, On the error of random Fourier features. arXiv:1506.02785, 2015, pp. 1–10.
K. Muandet, K. Fukumizu, B. Sriperumbudur, and B. Schölkopf, Kernel Mean Embedding of Distributions: A Review and Beyond (NOW Publishers, Delft, 2017).
W. Rudin, Fourier Analysis on Groups (Dover Publications, New York, 2017).
P. S. R. Diniz, On data-selective adaptive filtering. IEEE Transactions on Signal Processing 66, pp. 4239–4252 (2018).
M. O. K. Mendoņca, J. O. Ferreira, C. G. Tsinos, P. S. R. Diniz, and T. N. Ferreira, On fast converging data-selective adaptive filtering. Algorithms 12, pp. 1–15 (2019).
P. S. R. Diniz, J. O. Ferreira, M. O. K. Mendonça, and T. N. Ferreira, Data selection kernel conjugate gradient algorithm. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Barcelona, Spain, May 2020, pp. 1–5.
J. O. Ferreira, M. O. K. Mendoņca, and P. S. R. Diniz, Data selection in neural networks. IEEE Open Journal of Signal Processing 2, pp. 1–15 (2021).
J. B. Souza Filho and P. S. R. Diniz, A recursive least square algorithm for online kernel principal component extraction. Neuralcomputing 237, pp. 255– 264 (2017).
J. B. Souza Filho, P. S. R. Diniz, J. B. Souza Filho, and P. S. R. Diniz, Fixedpoint online kernel principal component extraction algorithm. IEEE Transactions on Signal Processing 65, pp. 6244–6259 (2017).
J. B. Souza Filho and P. S. R. Diniz, Improving KPCA online extraction by orthonormalization in the feature space. IEEE Transactions on Neural Networks and Learning Systems 29, pp. 2162–2388 (2018).
E. Eisenberg and D. Gale, “Consensus of subjective probabilities: The parimutuel method,” The Annals of Mathematical Statistics 30, pp. 165–168 (1959).
L. D. Brown and Y. Lin, “Racetrack betting and consensus of subjective probabilities,” Statistics & Probability Letters 62, pp. 175–187 (2003).
T. Norvig, “Consensus of subjective probabilities: A convergence theorem,” The Annals of Mathematical Statistics 38 pp. 221–225 (1967).
M. Stone, “The opinion pool,” The Annals of Mathematical Statistics 32, pp. 1339–1342 (1961).
R. L. Winkler, “The consensus of subjective probability distributions,” Management Science 15, pp. B61–B75 (1968).
M. H. Degroot, “Reaching a consensus,” Journal of the American Statistical Association 69, pp. 118–121 (1974).
O. C. Ibe, Markov processes for stochastic modeling, 2nd ed. (Elsevier, London, 2013).
S. Kirkland, “On the sequence of powers of a stochastic matrix with large exponent,” Linear Algebra and Its Applications 310, pp. 109–122 (2000).
E. Kani, N. J. Pullman, and N. M. Rice, “Powers of matrices,” in Algebraic Methods. Kingston: Queen’s University, 2019, ch. 7, pp. 311–370.
M. Rabbat and R. Nowak, “Distributed optimization in sensor networks,” in Third International Symposium on Information Processing in Sensor Networks, IPSN 2004, 2004, pp. 20–27.
D. P. Spanos and R. M. Murray, “Distributed sensor fusion using dynamic consensus,” in IFAC World Congress. Prague, Czech Republic: IFAC, 2005.
J. B. Predd, S. R. Kulkarni, and H. V. Poor, “Distributed learning in wireless sensor networks,” IEEE Signal Processing Magazine 23, pp. 56–69 (2006).
L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor fusion based on average consensus,” in 4th International Symposium on Information Processing in Sensor Networks, IPSN 2005, vol. 2005, Los Angeles, CA, USA, 2005, pp. 63–70.
L. Xiao, S. Boyd, and S. Lall, “A space-time diffusion scheme for peer-to-peer least-squares estimation,” in Proceedings of the Fifth International Conference on Information Processing in Sensor Networks, IPSN ’06, vol. 2006, pp. 168–176, 2006.
F. S. Cattivelli, C. G. Lopes, and A. H. Sayed, “Diffusion recursive least-squares for distributed estimation over adaptive networks,” IEEE Transactions on Signal Processing 56, pp. 1865–1877 (2008).
A. O. Hero, D. Cochran, and S. Member, “Sensor management: Past, present, and future,” IEEE Sensors Journal 11, pp. 3064–3075 (2011).
A. Sayed, Adaptation, learning, and optimization over networks (Now Publishers, Delft, 2014).
C. G. Lopes and A. H. Sayed, “Incremental adaptive strategies over distributed networks,” IEEE Transactions on Signal Processing 55, pp. 4064–4077 (2007).
A. H. Sayed and C. G. Lopes, “Distributed recursive least-squares strategies over adaptive networks,” in Fortieth Asilomar Conference on Signals, Systems and Computers, no. 1, 2006, pp. 233–237.
G. H. Golub and C. F. Van Loan, Matrix computations, 4th ed. (John Hopkins University Press, Baltimore, 2013).
J. Chen and A. H. Sayed, “Diffusion adaptation strategies for distributed optimization and learning over networks,” IEEE Transactions on Signal Processing 60, pp. 4289–4305 (2012).
C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over adaptive networks: formulation and performance analysis,” IEEE Transactions on Signal Processing 56, pp. 3122–3136 (2008).
S. Gollamudi, S. Nagaraj, S. Kapoor, and Y. F. Huang, “Set-membership filtering and a set-membership normalized LMS algorithm with an adaptive step size,” IEEE Signal Processing Letters 5, pp. 111–114 (1998).
S. Nagaraj, S. Gollamudi, S. Kapoor, and Y. F. Huang, “BEACON: An adaptive set-membership filtering technique with sparse updates,” IEEE Transactions on Signal Processing 47, pp. 2928–2941 (1999).
S. Werner, Y.-F. Huang, M. L. R. de Campos, and V. Koivunen, “Distributed parameter estimation with selective cooperation,” in 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. Taipei: IEEE, 2009, pp. 2849–2852.
W. Kahan, “Circumscribing an ellipsoid about the intersection of two ellipsoids,” Canadian Mathematical Bulletin 11, pp. 437–441 (1968).
J. F. Galdino, J. A. Apolinario Jr., and M. L. R. de Campos, “A set-membership NLMS algorithm with time-varying error bound,” in 2006 IEEE International Symposium on Circuits and Systems. Kos: IEEE, pp. 277–280.
I. Sobron, W. A. Martins, M. L. R. de Campos, and M. Velez, “Incumbent and LSA licensee classification through distributed cognitive networks,” IEEE Transactions on Communications 64 pp. 94–103 (2016).
F. C. Ribeiro Jr., M. L. R. de Campos, and S. Werner, “Distributed cooperative spectrum sensing with adaptive combining,” in 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Kyoto: IEEE, 2012, pp. 3557–3560.
F. C. Ribeiro Jr., S. Werner, and M. L. R. de Campos, “Distributed cooperative spectrum sensing with selective updating,” in European Signal Processing Conference (EUSIPCO), Bucharest, 2012, pp. 474–478.
F. C. Ribeiro Jr., M. L. R. de Campos, and S. Werner, “Distributed cooperative spectrum sensing with double-topology,” in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver: IEEE, 2013, pp. 4489–4493.
A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 3rd ed. (Pearson, Upper Saddle River, 2009).
O. L. Frost, III, An algorithm for linearly constrained adaptive array processing, Proceedings of the IEEE 60, pp. 926–935 (1972).
P. S. R. Diniz, Adaptive Filtering: Algorithms and Practical Implementations, 5th ed. (Springer, New York, 2020).
J. A. Apolinario Jr., S. Werner, P. S. R. Diniz, and T. I. Laakso, Constrained normalized adaptive filters for CDMA mobile communications, 9th European Signal Process. Conf. (EUSIPCO 1998), Island of Rhodes, Greece, 1998, pp. 1–4.
L. S. Resende, J. M. T. Romano, and M. G. Bellanger, A fast least-squares algorithm for linearly constrained adaptive filtering, IEEE Transactions on Signal Processing 44, pp. 1168–1174 (1996).
M. L. R. de Campos and J. A. Apolinário Jr., The constrained affine projection algorithm – development and convergence issues, First Balkan Conference on Signal Processing, Communications, Circuits and Systems, Istanbul, Turkey, 2000, pp. 1–4.
S. Werner and P. S. R. Diniz, Set-membership affine projection algorithm, IEEE Signal Proc. Letters 8, pp. 231–235 (2001).
S. Werner, J. A. Apolinario Jr., and M. L. R. De Campos, The data-selective constrained affine-projection algorithm, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2001) 6, Salt Lake City, USA, 2001, pp. 3745–3748.
S. Werner, J. A. Apolinario Jr., M. L. R. de Campos, and P. S. R. Diniz, Lowcomplexity constrained affine-projection algorithms, IEEE Transactions on Signal Processing 53, pp. 4545–4555 (2005).
J. F. Galdino, J. A. Apolinario Jr., and M. L. R. de Campos, A set-membership NLMS algorithm with time-varying error bound, IEEE International Symposium on Circuits and Systems (ISCAS 2006), Island of Kos, Greece, 2006, pp. 277–280.
L. J. Griffiths and C. W. Jim, An alternative approach to linearly constrained adaptive beamforming, IEEE Transactions on Antennas and Propagation AP30, pp. 27–34 (1982).
S. Werner, J. A. Apolinário Jr., and M. L. R. de Campos, On the equivalence of RLS implementations of LCMV and GSC processors, IEEE Signal Processing Letters 10, pp. 356–359 (2003).
C.-Y. Tseng and L. J. Griffiths, A systematic procedure for implementing the blocking matrix in decomposed form, Twenty-Second Asilomar Conference on Signals, Systems and Computers 2, Pacific Grove, USA, 1988, pp. 808–812.
Y. Chu, W.-H. Fang, and S.-H. Chang, A novel wavelet-based generalized sidelobe canceller, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 1998) 4, Seattle, USA, 1998, pp. 2497–2500.
P. S. Chang and A. N. Willson, Adaptive filtering using modified conjugate gradient, 38th Midwest Symposium on Circuits and Systems, 1, Rio de Janeiro, Brazil, 1995, pp. 243–246.
P. S. Chang and A. N. Willson, Analysis of conjugate gradient algorithms for adaptive filtering, IEEE Transactions on Signal Processing 48, pp. 409–418 (2000).
J. A. Apolinario Jr., M. L. R. de Campos, and C. P. Bernal O., The constrained conjugate gradient algorithm, IEEE Signal Processing Letters 7, pp. 351–354 (2000).
L. Wang and R. C. de Lamare, Set-membership constrained conjugate gradient adaptive algorithm for beamforming, IET Signal Processing 6, pp. 789–797 (2012).
M. L. R. de Campos, S. Werner, and J. A. Apolinário Jr., Constrained adaptation algorithms employing Householder transformation, IEEE Transactions on Signal Processing 50, pp. 2187–2195 (2002).
M. L. R. de Campos, S. Werner, and J. A. Apolinário Jr., Householder-transform constrained LMS algorithms with reduced-rank updating, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 1999) 4, Phoenix, USA, 1999, pp. 1857–1860.
G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. (The Johns Hopkins University Press, Baltimore, 1996).
J. H. Wilkinson (ed.), The Algebraic Eigenvalue Problem (Oxford University Press, New York, 1988).
D. Duttweiler, Proportionate normalized least-mean-squares adaptation in echo cancelers, IEEE Transactions on Speech and Audio Processing 8, pp. 508–518 (2000).
J. Benesty and S. L. Gay, An improved PNLMS algorithm, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2002) 2, Orlando, USA, 2002, pp. 1881–1884.
Y. Chen, Y. Gu, and A. O. Hero III, Sparse LMS for system identification, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2009), Taipei, Taiwan, 2009, pp. 3125–3128.
M. L. R. de Campos and J. A. Apolinário Jr., Shrinkage methods applied to adaptive filters, 2010 International Conference on Green Circuits and Systems, Shanghai, China, 2010, pp. 41–45.
C. Paleologu, J. Benesty, and S. Ciochina, An improved proportionate NLMS algorithm based on the l0 norm, IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), Dallas, USA, 2010, pp. 309–312.
Y. Kopsinis, K. Slavakis, and S. Theodoridis, Online sparse system identification and signal reconstruction using projections onto weighted £1 balls, IEEE Transactions on Signal Processing 59, 936–952 (2011).
M. V. S. Lima, T. N. Ferreira, W. A. Martins, and P. S. R. Diniz, Sparsityaware data-selective adaptive filters, IEEE Transactions on Signal Processing 62, pp. 4557–4572 (2014).
J. F. de Andrade Jr., M. L. R. de Campos, and J. A. Apolinário Jr., An £1norm linearly constrained LMS algorithm applied to adaptive beamforming, 7th IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM 2012), Hoboken, USA, 2012, pp. 429–432.
J. F. de Andrade Jr., M. L. R. de Campos, and J. A. Apolinário Jr., An £1constrained normalized LMS algorithm and its application to thinned adaptive antenna arrays, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2013), Vancouver, Canada, 2013, pp. 3806–3810.
J. F. Andrade Jr., M. L. R. de Campos, and J. A. Apolinário Jr., £1-constrained normalized LMS algorithms for adaptive beamforming, IEEE Transactions on Signal Processing 63, pp. 6524–6539 (2015).
J. F. Andrade Jr., M. L. R. Campos, and J. A. Apolinário Jr., An £1-norm linearly constrained affine projection algorithm, IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM 2016), Rio de Janeiro, Brazil, 2016, pp. 1–5.
L. C. Godara, Application of the fast Fourier transform to broadband beamforming, The Journal of the Acoustical Society of America 98, pp. 230–240 (1995).
J. A. Apolinario Jr. and M. L. R. de Campos, Sparse broadband acoustic adaptive beamformers for underwater applications, MTS/IEEE Oceans Conference, Aberdeen, Scotland, 2017, pp. 1–6.
H. L. V. Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory (John Wiley & Sons, Hoboken, 2002).
S. M. Razavizadeh, M. Ahn, and I. Lee, Three-dimensional beamforming: A new enabling technology for 5G wireless networks, IEEE Signal Processing Magazine 31, pp. 94–101 (2014).
X. Gong and Q. Lin, Spatially constrained parallel factor analysis for semiblind beamforming, Seventh International Conference on Natural Computation 1, Shanghai, China, 2011, pp. 416–420.
R. K. Miranda, J. P. C. L. da Costa, F. Roemer, A. L. F. de Almeida, and G. Del Galdo, Generalized sidelobe cancellers for multidimensional separable arrays, IEEE 6th International Workshop on Computational Advances in MultiSensor Adaptive Processing (CAMSAP 2015), Cancun, Mexico, 2015, pp. 193–196.
L. N. Ribeiro, A. L. F. de Almeida, and J. C. M. Mota, Tensor beamforming for multilinear translation invariant arrays, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2016), Shanghai, China, 2016, pp. 2966–2970.
A. L. L. Ramos, J. A. Apolinario Jr., and M. L. R. de Campos, On numerical robustness of constrained RLS-like algorithms, Brazilian Telecommunication Symposium (SBrT 2004), Belém, Brazil, 2004.
M. L. R. de Campos, S. Werner, J. A. Apolinário Jr., and T. I. Laakso, Constrained quasi-Newton algorithm for CDMA mobile communications, SBrT/IEEE International Telecommunications Symposium (ITS 1998) 1, São Paulo, Brazil, 1998, pp. 371–376.
Pi Sheng Chang and A. N. Willson, Analysis of conjugate gradient algorithms for adaptive filtering, IEEE Transactions on Signal Processing 48, pp. 409–418 (2000).
M. L. R. de Campos and A. Antoniou, A new quasi-Newton adaptive filtering algorithm, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 44, pp. 924–934 (1997).
A. Ortega, P. Frossard, J. Kovăcević, J. M. F. Moura, and P. Vandergheynst, Graph signal processing: Overview, challenges, and applications, Proceedings of the IEEE 106, pp. 808–828 (2018).
L. A. S. Moreira, A. L. L. Ramos, M. L. R. de Campos, J. A. Apolinário Jr., and F. G. Serrenho, A graph signal processing approach to direction of arrival estimation, in Proceedings of the 27th European Signal Processing Conference (EUSIPCO), A Corunã, Spain, September 2019, pp. 1–5.
A. Sandryhaila and J. M. F. Moura, Big data analysis with signal processing on graphs: Representation and processing of massive data sets with irregular structure, IEEE Signal Processing Magazine 31, pp. 80–90 (2014).
Y. Chen, S. Kar, and J. M. F. Moura, The internet of things: Secure distributed inference, IEEE Signal Processing Magazine 35, pp. 64–75 (2018).
J. Friedman, T. Hastie, and R. Tibshirani, Sparse inverse covariance estimation with the graphical LASSO, Biostatistics 9, pp. 432–441 (2008).
S. I. Daitch, J. A. Kelner, and D. A. Spielman, Fitting a graph to vector data, in Proceedings of the 26th Annual International Conference on Machine Learning (ICML), Montreal, Canada, June 2009, pp. 201–208.
X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, Learning Laplacian matrix in smooth graph signal representations, IEEE Transactions on Signal Processing 64, pp. 6160–6173 December (2016).
S. Segarra, G. Mateos, A. G. Marques, and A. Ribeiro, Blind identification of graph filters, IEEE Transactions on Signal Processing 65, pp. 1146–1159 (2017).
J. Mei and J. M. F. Moura, Signal processing on graphs: Causal modeling of unstructured data, IEEE Transactions on Signal Processing 65, pp. 2077–2092 (2017).
D. Thanou, X. Dong, D. Kressner, and P. Frossard, Learning heat diffusion graphs, IEEE Transactions on Signal and Information Processing over Networks 3, pp. 484–499 (2017).
H. E. Egilmez, E. Pavez, and A. Ortega, Graph learning from data under Laplacian and structural constraints, IEEE Journal of Selected Topics in Signal Processing 11, pp. 825–841 (2017).
S. Segarra, A. G. Marques, G. Mateos, and A. Ribeiro, Network topology inference from spectral templates, IEEE Transactions on Signal and Information Processing over Networks 3, pp. 467–483 (2017).
B. Pasdeloup, V. Gripon, G. Mercier, D. Pastor, and M. G. Rabbat, Characterization and inference of graph diffusion processes from observations of stationary signals, IEEE Transactions on Signal and Information Processing over Networks 4, pp. 481–496 (2018).
M. Püschel and J. M. F. Moura, The algebraic approach to the discrete cosine and sine transforms and their fast algorithms, SIAM Journal on Computing 32, pp. 1280–1316 (2003).
M. Püschel and J. M. F. Moura, Algebraic signal processing theory: Cooley-Tukey type algorithms for DCTs and DSTs, IEEE Transactions on Signal Processing 56, pp. 1502–1521 (2008).
M. Püschel and J. M. F. Moura, Algebraic signal processing theory: Foundation and 1-D time, IEEE Transactions on Signal Processing 56, pp. 3572–3585 (2008).
M. Püschel and J. M. F. Moura, Algebraic signal processing theory: 1-D space, IEEE Transactions on Signal Processing 56, pp. 3586–3599 (2008).
A. Sandryhaila and J. M. F. Moura, Discrete signal processing on graphs, IEEE Transactions on Signal Processing 61, pp. 1644–1656 (2013).
A. Sandryhaila and J. M. F. Moura, Discrete signal processing on graphs: Frequency analysis, IEEE Transactions on Signal Processing 62, pp. 3042–3050 (2014).
B. Girault, P. Goņcalves, and É. Fleury, Translation on graphs: An isometric shift operator, IEEE Signal Processing Letters 22, pp. 2416–2420 (2015).
A. Gavili and X. P. Zhang, On the shift operator, graph frequency, and optimal filtering in graph signal processing, IEEE Transactions on Signal Processing 65, pp. 6303–6318 (2017).
F. R. K. Chung, Spectral Graph Theory (AMS, Providence, 1997).
M. Belkin and P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation, Neural Computation 15, pp. 1373–1396 (2003).
R. S. Wagner, R. G. Baraniuk, S. Du, D. B. Johnson, and A. Cohen, An architecture for distributed wavelet analysis and processing in sensor networks, in Proceedings of the 5th International Conference on Information Processing in Sensor Networks (IPSN), Nashville, USA, April 2006, pp. 243–250.
X. Zhu and M. Rabbat, Approximating signals supported on graphs, in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, March 2012, pp. 3921–3924.
D. L. Donoho and C. Grimes, Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data, Proceedings of the National Academy of Sciences of the United States of America 100, pp. 5591–5596 (2013).
D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains, IEEE Signal Processing Magazine 30, pp. 83–98 (2013).
D. Romero, M. Ma, and G. B. Giannakis, Kernel-based reconstruction of graph signals, IEEE Transactions on Signal Processing 65, pp. 764–778 (2017).
D. Romero, V. N. Ioannidis, and G. B. Giannakis, Kernel-based reconstruction of space-time functions on dynamic graphs, IEEE Journal of Selected Topics in Signal Processing 11, pp. 856–869 (2017).
V. N. Ioannidis, D. Romero, and G. B. Giannakis, Inference of spatio-temporal functions over graphs via multikernel kriged Kalman filtering, IEEE Transactions on Signal Processing 66, pp. 3228–3239 (2018).
V. R. M. Elias, V. C. Gogineni, W. A. Martins, and S. Werner, Kernel regression on graphs in random Fourier features space, in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Canada, June 2021, pp. 5235–5239.
V. R. M. Elias, V. C. Gogineni, W. A. Martins, and S. Werner, Adaptive graph filters in reproducing kernel Hilbert spaces: Design and performance analysis, IEEE Transactions on Signal and Information Processing over Networks, 77, pp. 62–74 (2021).
I. Pesenson, Sampling in Paley-Wiener spaces on combinatorial graphs, Transactions of the American Mathematical Society 360, pp. 5603–5627 (2008).
S. K. Narang, A. Gadde, and A. Ortega, Signal processing techniques for interpolation in graph structured data, in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, Canada, May 2013, pp. 5445–5449.
A. Anis, A. Gadde, and A. Ortega, Towards a sampling theorem for signals on arbitrary graphs, in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, May 2014, pp. 3864–3868.
H. Shomorony and A. S. Avestimehr, Sampling large data on graphs, in Proceedings of the IEEE Global Conference on Signal and Information Processing (GlobalSIP), Atlanta, USA, December 2014, pp. 933–936.
A. Gadde and A. Ortega, A probabilistic interpretation of sampling theory of graph signals, in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, April 2015, pp. 3257–3261.
S. Chen, A. Sandryhaila, and J. Kovăcević, Sampling theory for graph signals, in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, April 2015, pp. 3392–3396.
X. Wang, P. Liu, and Y. Gu, Local-set-based graph signal reconstruction, IEEE Transactions on Signal Processing 63, pp. 2432–2444 (2015).
S. Chen, A. Sandryhaila, J. M. F. Moura, and J. Kovăcević, Signal recovery on graphs: Variation minimization, IEEE Transactions on Signal Processing 63, pp. 4609-4624 (2015).
S. Chen, R. Varma, A. Sandryhaila, and J. Kovăcević, Discrete signal processing on graphs: Sampling theory, IEEE Transactions on Signal Processing 63, pp. 6510–6523 (2015).
A. Anis, A. Gadde, and A. Ortega, Efficient sampling set selection for bandlimited graph signals using graph spectral proxies, IEEE Transactions on Signal Processing 64, pp. 3775–3789 (2016).
A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, Sampling of graph signals with successive local aggregations, IEEE Transactions on Signal Processing 64, pp. 1832–1843 (2016).
S. Chen, R. Varma, A. Singh, and J. Kovăcević, Signal recovery on graphs: Fundamental limits of sampling strategies, IEEE Transactions on Signal and Information Processing over Networks 2, pp. 539–554 (2016).
L. F. O. Chamon and A. Ribeiro, Greedy sampling of graph signals, IEEE Transactions on Signal Processing 66, pp. 34–47 (2018).
G. Puy, N. Tremblay, R. Gribonval, and P. Vandergheynst, Random sampling of bandlimited signals on graphs, Applied and Computational Harmonic Analysis 44, pp. 446–475 (2018).
Y. Shen, G. Leus, and G. B. Giannakis, Online graph-adaptive learning with scalability and privacy, IEEE Transactions on Signal Processing 67, pp. 2471– 2483 (2019).
N. Cressie, The origins of Kriging, Mathematical Geology 22, pp. 239–252 (1990).
P. D. Lorenzo, P. Banelli, and S. Barbarossa, Optimal sampling strategies for adaptive learning of graph signals, in Proceedings of the 25th European Signal Processing Conference (EUSIPCO), Cos, Greece, September 2017, pp. 1684–1688.
P. D. Lorenzo, P. Banelli, E. Isufi, S. Barbarossa, and G. Leus, Adaptive graph signal processing: Algorithms and optimal sampling strategies, IEEE Transactions on Signal Processing 66, pp. 3584–3598 (2018).
P. Lorenzo, S. Barbarossa, and P. Banelli, Chapter 9 – Sampling and recovery of graph signals, in: P. M. Djurić, C. Richard (Eds.), Cooperative and Graph Signal Processing, Academic Press, 2018, pp. 261–282.
R. Nassif, C. Richard, J. Chen, and A. H. Sayed, A graph diffusion LMS strategy for adaptive graph signal processing, in Proceedings of the 51st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, November 2017, pp. 1973–1976.
R. Nassif, C. Richard, J. Chen, and A. H. Sayed, Distributed diffusion adaptation over graph signals, in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, April 2018, pp. 4129–4133.
F. Hua, R. Nassif, C. Richard, H. Wang, and A. H. Sayed, A preconditioned graph diffusion LMS for adaptive graph signal processing, in Proceedings of the 26th European Signal Processing Conference (EUSIPCO), Rome, Italy, September 2018, pp. 111–115.
F. Hua, R. Nassif, C. Richard, H. Wang, and A. H. Sayed, Decentralized clustering for node-variant graph filtering with graph diffusion LMS, in Proceedings of the 52nd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, October 2018, pp. 1418–1422.
M. Coutino, E. Isufi, and G. Leus, Distributed edge-variant graph filters, in Proceedings of the IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Curaçao, Dutch Antilles, December 2017, pp. 1–5.
X. Wang, M. Wang, and Y. Gu, A distributed tracking algorithm for reconstruction of graph signals, IEEE Journal of Selected Topics in Signal Processing 9, pp. 728–740 (2015).
P. D. Lorenzo, S. Barbarossa, P. Banelli, and S. Sardellitti, Adaptive least mean squares estimation of graph signals, IEEE Transactions on Signal and Information Processing over Networks 2, pp. 555–568 (2016).
P. D. Lorenzo, P. Banelli, S. Barbarossa, and S. Sardellitti, Distributed adaptive learning of graph signals, IEEE Transactions on Signal Processing 65, pp. 4193–4208 (2017).
K. Qiu, X. Mao, X. Shen, X. Wang, T. Li, and Y. Gu, Time-varying graph signal reconstruction, IEEE Journal of Selected Topics in Signal Processing 11, pp. 870–883 (2017).
P. D. Lorenzo and E. Ceci, Online recovery of time-varying signals defined over dynamic graphs, in Proceedings of the 26th European Signal Processing Conference (EUSIPCO), Rome, Italy, September 2018, pp. 131–135.
M. J. M. Spelta and W. A. Martins, Online temperature estimation using graph signals, in Proceedings of the XXXVI Simpósio Brasileiro de Telecomunicacões e Processamento de Sinais (SBrT), Campina Grande, Brazil, September 2018, pp. 154–158.
M. J. M. Spelta and W. A. Martins, Normalized LMS algorithm and dataselective strategies for adaptive graph signal estimation, Signal Processing 167, 107326 (2020).
P. D. Lorenzo, E. Isufi, P. Banelli, S. Barbarossa, and G. Leus, Distributed recursive least squares strategies for adaptive reconstruction of graph signals, in Proceedings of the 25th European Signal Processing Conference (EUSIPCO), Cos, Greece, September 2017, pp. 2289–2293.