[en] The rise of flexible payloads on satellites opens a door for controlling satellite resources according to the user demand, user location, and satellite position. In addition to resource management, applying precoding on flexible payloads is essential to obtain high spectral efficiency. However, these cannot be achieved using a conventional resource allocation algorithm that does not consider the user demand. In this paper, we propose a demand-aware algorithm based on multiobjective optimization to jointly design the carrier allocation and precoding for better spectral efficiency and demand matching with proper management of the satellite resources. The optimization problem is non-convex, and we solve it using convex relaxation and successive convex approximation. Then, we evaluate the performance of the proposed algorithm through numerical results. It is shown that the proposed method outperforms the benchmark schemes in terms of resource utilization and demand satisfaction.
ABDU, Tedros Salih ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
KISSELEFF, Steven ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
LAGUNAS, Eva ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
CHATZINOTAS, Symeon ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
OTTERSTEN, Björn ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
External co-authors :
no
Language :
English
Title :
JOINT CARRIER ALLOCATION AND PRECODING OPTIMIZATION FOR INTERFERENCE-LIMITED GEO SATELLITE
Publication date :
2022
Event name :
the 39th International Communications Satellite Systems Conference (ICSSC)
Event place :
STRESA, Italy
Event date :
October 18 through October 21, 2022
Focus Area :
Security, Reliability and Trust
FnR Project :
FNR14603732 - Power And Bandwidth Allocation For Interference-limited Satellite Communication Systems, 2020 (01/03/2020-30/09/2023) - Tedros Salih Abdu