[en] We model the dynamic volatility and correlation structure of electricity futures of the European Energy Exchange index. We use a new multiplicative dynamic conditional correlation (mDCC) model to separate long-run from short-run components. We allow for smooth changes in the unconditional volatilities and correlations through a multiplicative component that we estimate nonparametrically. For the short-run dynamics, we use a GJR-GARCH model for the conditional variances and augmented DCC models for the conditional correlations. We also introduce exogenous variables to account for congestion and delivery date effects in short-term conditional variances. We find different correlation dynamics for long- and short-term contracts and the new model achieves higher forecasting performance compared \to a standard DCC model.
Disciplines :
Finance
Auteur, co-auteur :
Bauwens, Luc
Hafner, Christian
PIERRET, Diane ; University of Luxembourg > Faculty of Law, Economics and Finance (FDEF) > Department of Finance (DF)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Multivariate Volatility Modeling of Electricity Futures
Date de publication/diffusion :
août 2013
Titre du périodique :
Journal of Applied Econometrics
ISSN :
0883-7252
eISSN :
1099-1255
Maison d'édition :
John Wiley & Sons, Hoboken, Etats-Unis - New Jersey