[en] Mechanically responsive textiles have transformative potential in many areas from fashion to healthcare. Cholesteric liquid crystal elastomers have strong mechanochromic responses that offer attractive opportunities for such applications. Nonetheless, making liquid crystalline elastomer fibres suitable for textiles is challenging since the Plateau–Rayleigh instability tends to break up precursor solutions into droplets. Here, we report a simple approach that balances the viscoelastic properties of the precursor solution to avoid this outcome and achieve long and mechanically robust cholesteric liquid crystal elastomer filaments. These filaments have fast, progressive and reversible mechanochromic responses, from red to blue (wavelength shift of 155 nm), when stretched up to 200%. Moreover, the fibres can be sewed into garments and withstand repeated stretching and regular machine washing. This approach and resulting fibres may be useful for applications in wearable technology and other areas benefiting from autonomous strain sensing or detection of critically strong deformations.
Disciplines :
Physique
Auteur, co-auteur :
GENG, Yong ✱; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
KIZHAKIDATHAZHATH, Rijeesh ✱; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
LAGERWALL, Jan ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
✱ Ces auteurs ont contribué de façon équivalente à la publication.
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Robust cholesteric liquid crystal elastomer fibres for mechanochromic textiles
Koncar, V. Smart Textiles and Their Applications (Woodhead Publishing, 2016).
Van Langenhove, L., Hertleer, C., Westbroek, P. & Priniotakis, J. in Smart Textiles for Medicine and Healthcare: Materials, Systems and Applications 106–122 (Woodhead Publishing and CRC Press, 2007).
Hatamie, A. et al. Textile based chemical and physical sensors for healthcare monitoring. J. Electrochem. Soc. 167, 037546 (2020). DOI: 10.1149/1945-7111/ab6827
Patil, V. P., Sandt, J. D., Kolle, M. & Dunkel, J. Topological mechanics of knots and tangles. Science 367, 71–75 (2020). DOI: 10.1126/science.aaz0135
Yetisen, A. et al. Nanotechnology in textiles. ACS Nano 10, 3042–3068 (2016).
Xiong, J., Chen, J. & Lee, P. S. Functional fibers and fabrics for soft robotics, wearables, and human–robot interface. Adv. Mater. 33, 2002640 (2021). DOI: 10.1002/adma.202002640
Ma, Z. et al. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat. Mater. 20, 859–868 (2021). DOI: 10.1038/s41563-020-00902-3
Veerapandian, S. et al. Hydrogen-doped viscoplastic liquid metal microparticles for stretchable printed metal lines. Nat. Mater. 20, 533–540 (2021). DOI: 10.1038/s41563-020-00863-7
Van Langenhove, L., Puers, R. & Matthys, D. in Textiles for Protection Chapter 7, 176–195 (Woodhead Publishing, 2005).
O’Neill, C., McCann, C., Hohimer, C., Bertoldi, K. & Walsh, C. Unfolding textile-based pneumatic actuators for wearable applications. Soft Robot. 9, 163–172 (2022).
Bandodkar, A. J. & Wang, J. Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol. 32, 363–371 (2014). DOI: 10.1016/j.tibtech.2014.04.005
Wang, W. et al. Harnessing the hygroscopic and biofluorescent behaviors of genetically tractable microbial cells to design biohybrid wearables. Sci. Adv. 3, e1601984 (2017). DOI: 10.1126/sciadv.1601984
Son, D. et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 9, 397–404 (2014). DOI: 10.1038/nnano.2014.38
Guo, L., Berglin, L. & Mattila, H. Improvement of electro-mechanical properties of strain sensors made of elastic-conductive hybrid yarns. Text. Res. J. 82, 1937–1947 (2012). DOI: 10.1177/0040517512452931
Park, S., Mackenzie, K. Jayaraman, S. in Proceedings of the 39th Annual Design Automation Conference 170–174 (Association for Computing Machinery, 2002).
Chen, Y., Sommer, M. & Weder, C. Mechanochromic polymers. Macromol. Rapid Commun. 42, 2000685 (2021). DOI: 10.1002/marc.202000685
Raisch, M., Maftuhin, W., Walter, M. & Sommer, M. A mechanochromic donor-acceptor torsional spring. Nat. Commun. 12, 4243 (2021).
Clough, J. M., Weder, C. & Schrettl, S. Mechanochromism in structurally colored polymeric materials. Macromol. Rapid Commun. 42, 2000528 (2021). DOI: 10.1002/marc.202000528
Chen, G. & Hong, W. Mechanochromism of structural-colored materials. Adv. Opt. Mater. 8, 2000984 (2020). DOI: 10.1002/adom.202000984
Bourzac, K. Moving skin beyond the biological. Nature 563, S96–S98 (2018). DOI: 10.1038/d41586-018-07434-6
Cheng, C.-H. et al. Fabrication and deformation of mechanochromic nanocomposite elastomers based on rubbery and glassy block copolymer-grafted silica nanoparticles. Macromolecules 53, 4541–4551 (2020). DOI: 10.1021/acs.macromol.9b02031
Kim, J. H. et al. Microfluidic production of mechanochromic photonic fibers containing nonclose-packed colloidal arrays. Small Sci. 1, 2000058 (2021). DOI: 10.1002/smsc.202000058
Kolle, M. et al. Bio-inspired band-gap tunable elastic optical multilayer fibers. Adv. Mater. 25, 2239–2245 (2013). DOI: 10.1002/adma.201203529
Warner, M. & Terentjev, E. M. Liquid Crystal Elastomers Vol. 120 (Oxford Univ. Press, 2007).
White, T. J. & Broer, D. J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 14, 1087–1098 (2015). DOI: 10.1038/nmat4433
Van Oosten, C. L., Bastiaansen, C. W. & Broer, D. J. Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat. Mater. 8, 677–682 (2009). DOI: 10.1038/nmat2487
Palffy-Muhoray, P. in Liquid Crystal Elastomers: Materials and Applications (ed. de Jeu, W.) 95–118 (Springer, Berlin, Heidelberg, 2012).
Kim, S.-U. et al. Broadband and pixelated camouflage in inflating chiral nematic liquid crystalline elastomers. Nat. Mater. 21, 41–46 (2022). DOI: 10.1038/s41563-021-01075-3
Kizhakidathazhath, R. et al. Facile anisotropic deswelling method for realizing large-area cholesteric liquid crystal elastomers with uniform structural color and broad-range mechanochromic response. Adv. Funct. Mater. 30, 1909537 (2020). DOI: 10.1002/adfm.201909537
Hisano, K. et al. Mechano-optical sensors fabricated with multilayered liquid crystal elastomers exhibiting tunable deformation recovery. Adv. Funct. Mater. 31, 2104702 (2021).
Zhang, P., Zhou, G., de Haan, L. T. & Schenning, A. P. 4D chiral photonic actuators with switchable hyper-reflectivity. Adv. Funct. Mater. 31, 2007887 (2021). DOI: 10.1002/adfm.202007887
Martinez, A. M., McBride, M. K., White, T. J. & Bowman, C. N. Reconfigurable and spatially programmable chameleon skin-like material utilizing light responsive covalent adaptable cholesteric liquid crystal elastomers. Adv. Funct. Mater. 30, 2003150 (2020).
Zhang, P., Shi, X., Schenning, A. P., Zhou, G. & de Haan, L. T. A patterned mechanochromic photonic polymer for reversible image reveal. Adv. Mater. Interfaces 7, 1901878 (2020). DOI: 10.1002/admi.201901878
Varanytsia, A., Nagai, H., Urayama, K. & Palffy-Muhoray, P. Tunable lasing in cholesteric liquid crystal elastomers with accurate measurements of strain. Sci. Rep. 5, 17739 (2015). DOI: 10.1038/srep17739
Picot, O. T. et al. A real time optical strain sensor based on a cholesteric liquid crystal network. RSC Adv. 3, 18794 (2013). DOI: 10.1039/c3ra42986e
Serra, F., Matranga, M. A., Ji, Y. & Terentjev, E. M. Single-mode laser tuning from cholesteric elastomers using a ‘notch’ band-gap configuration. Opt. Express 18, 575–581 (2010). DOI: 10.1364/OE.18.000575
Schmidtke, J., Kniesel, S. & Finkelmann, H. Probing the photonic properties of a cholesteric elastomer under biaxial stress. Macromolecules 38, 1357–1363 (2005). DOI: 10.1021/ma0487655
Cicuta, P., Tajbakhsh, A. & Terentjev, E. Photonic gaps in cholesteric elastomers under deformation. Phys. Rev. E 70, 011703 (2004). DOI: 10.1103/PhysRevE.70.011703
Finkelmann, H., Kim, S. T., Munoz, A., Palffy-Muhoray, P. & Taheri, B. Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Adv. Mater. 13, 1069–1072 (2001). DOI: 10.1002/1521-4095(200107)13:14<1069::AID-ADMA1069>3.0.CO;2-6
Mao, Y., Terentjev, E. & Warner, M. Cholesteric elastomers: deformable photonic solids. Phys. Rev. E 64, 041803 (2001). DOI: 10.1103/PhysRevE.64.041803
Kitzerow, H.-S. & Bahr, C. (eds) Chirality in Liquid Crystals (Springer, 2000).
Eggers, J. Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69, 865–929 (1997). DOI: 10.1103/RevModPhys.69.865
Urbanski, M. et al. Liquid crystals in micron-scale droplets, shells and fibers. J. Phys. Condens. Matter 29, 133003 (2017). DOI: 10.1088/1361-648X/aa5706
Guan, Y., Agra-Kooijman, D. M., Fu, S., Jákli, A. & West, J. L. Responsive liquid-crystal-clad fibers for advanced textiles and wearable sensors. Adv. Mater. 31, 1902168 (2019). DOI: 10.1002/adma.201902168
Honaker, L. W., Vats, S., Anyfantakis, M. & Lagerwall, J. P. Elastic sheath–liquid crystal core fibres achieved by microfluidic wet spinning. J. Mater. Chem. C 7, 11588–11596 (2019). DOI: 10.1039/C9TC03836A
Kim, S. T. & Finkelmann, H. Cholesteric liquid single-crystal elastomers (LSCE) obtained by the anisotropic deswelling method. Macromol. Rapid Commun. 22, 429–433 (2001). DOI: 10.1002/1521-3927(20010301)22:6<429::AID-MARC429>3.0.CO;2-#
Frka-Petesic, B., Kamita, G., Guidetti, G. & Vignolini, S. Angular optical response of cellulose nanocrystal films explained by the distortion of the arrested suspension upon drying. Phys. Rev. Mater. 3, 045601 (2019).
Guenthner, A. J. et al. Dynamics of hollow nanofiber formation during solidification subjected to solvent evaporation. Macromol. Theory Simul. 15, 87–93 (2006). DOI: 10.1002/mats.200500034
Warner, M., Terentjev, E. M., Meyer, R. B. & Mao, Y. Untwisting of a cholesteric elastomer by a mechanical field. Phys. Rev. Lett. 85, 2320–2323 (2000). DOI: 10.1103/PhysRevLett.85.2320