[en] Active systems, which are driven out of equilibrium by local non-conservative forces, can adopt unique behaviors and configurations. An important challenge in the design of novel materials, which utilize such properties, is to precisely connect the static structure of active systems to the dissipation of energy induced by the local driving. Here, we use tools from liquid-state theories and machine learning to take on this challenge. We first analytically demonstrate for an isotropic active matter system that dissipation and pair correlations are closely related when driving forces behave like an active temperature. We then extend a nonequilibrium mean-field framework for predicting these pair correlations, which unlike most existing approaches is applicable even for strongly interacting particles and far from equilibrium, to predicting dissipation in these systems. Based on this theory, we reveal a robust analytic relation between dissipation and structure, which holds even as the system approaches a nonequilibrium phase transition. Finally, we construct a neural network that maps static configurations of particles to their dissipation rate without any prior knowledge of the underlying dynamics. Our results open novel perspectives on the interplay between dissipation and organization out of equilibrium.
Disciplines :
Physics
Author, co-author :
Rassolov, Gregory; James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA ; Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
Tociu, Laura; James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA ; Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
FODOR, Etienne ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Vaikuntanatha, Suriyanarayanan; James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA ; Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
External co-authors :
yes
Language :
English
Title :
From predicting to learning dissipation from pair correlations of active liquids
Publication date :
05 August 2022
Journal title :
Journal of Chemical Physics
ISSN :
0021-9606
eISSN :
1089-7690
Publisher :
American Institute of Physics, New York, United States - New York
M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, M. Rao, and R. A. Simha, Rev. Mod. Phys. 85, 1143 (2013). 10.1103/revmodphys.85.1143
C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, and G. Volpe, Rev. Mod. Phys. 88, 045006 (2016). 10.1103/revmodphys.88.045006
É. Fodor and M. C. Marchetti, Physica A 504, 106 (2018). 10.1016/j.physa.2017.12.137
J. Elgeti, R. G. Winkler, and G. Gompper, Rep. Prog. Phys. 78, 056601 (2015). 10.1088/0034-4885/78/5/056601
J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine, and P. M. Chaikin, Science 339, 936 (2013). 10.1126/science.1230020
A. Cavagna and I. Giardina, Annu. Rev. Condens. Matter Phys. 5, 183 (2014). 10.1146/annurev-conmatphys-031113-133834
N. Bain and D. Bartolo, Science 363, 46 (2019). 10.1126/science.aat9891
D. A. Fletcher and P. L. Geissler, Annu. Rev. Phys. Chem. 60, 469 (2009). 10.1146/annurev.physchem.040808.090304
N. Kumar, H. Soni, S. Ramaswamy, and A. K. Sood, Nat. Commun. 5, 4688 (2014). 10.1038/ncomms5688
M. E. Cates and J. Tailleur, Annu. Rev. Condens. Matter Phys. 6, 219 (2015). 10.1146/annurev-conmatphys-031214-014710
S. C. Takatori, W. Yan, and J. F. Brady, Phys. Rev. Lett. 113, 028103 (2014). 10.1103/physrevlett.113.028103
A. P. Solon, J. Stenhammar, R. Wittkowski, M. Kardar, Y. Kafri, M. E. Cates, and J. Tailleur, Phys. Rev. Lett. 114, 198301 (2015). 10.1103/physrevlett.114.198301
J. Bialké, J. T. Siebert, H. Löwen, and T. Speck, Phys. Rev. Lett. 115, 098301 (2015). 10.1103/physrevlett.115.098301
R. Zakine, Y. Zhao, M. Knezević, A. Daerr, Y. Kafri, J. Tailleur, and F. van Wijland, Phys. Rev. Lett. 124, 248003 (2020). 10.1103/physrevlett.124.248003
J. Guioth and E. Bertin, J. Chem. Phys. 150, 094108 (2019). 10.1063/1.5085740
C. del Junco, L. Tociu, and S. Vaikuntanathan, Proc. Natl. Acad. Sci. U. S. A. 115, 3569 (2018). 10.1073/pnas.1713573115
D. S. Seara, B. B. Machta, and M. P. Murrell, Nat. Commun. 12, 392 (2021). 10.1038/s41467-020-20281-2
P. Pietzonka, E. Fodor, C. Lohrmann, M. E. Cates, and U. Seifert, Phys. Rev. X 9, 041032 (2019). 10.1103/physrevx.9.041032
Z. Liao, W. T. M. Irvine, and S. Vaikuntanathan, Phys. Rev. X 10, 021036 (2020). 10.1103/physrevx.10.021036
T. Ekeh, M. E. Cates, and E. Fodor, Phys. Rev. E 102, 010101 (2020). 10.1103/physreve.102.010101
L. Tociu, E. Fodor, T. Nemoto, and S. Vaikuntanathan, Phys. Rev. X 9, 041026 (2019). 10.1103/physrevx.9.041026
É. Fodor, T. Nemoto, and S. Vaikuntanathan, New J. Phys. 22, 013052 (2020). 10.1088/1367-2630/ab6353
T. Nemoto, E. Fodor, M. E. Cates, R. L. Jack, and J. Tailleur, Phys. Rev. E 99, 022605 (2019). 10.1103/physreve.99.022605
T. GrandPre, K. Klymko, K. K. Mandadapu, and D. T. Limmer, Phys. Rev. E 103, 012613 (2021). 10.1103/PhysRevE.103.012613
G. Gompper, R. G. Winkler, T. Speck, A. Solon, C. Nardini, F. Peruani, H. Löwen, R. Golestanian, U. B. Kaupp, L. Alvarez, T. Kiørboe, E. Lauga, W. C. K. Poon, A. DeSimone, S. Muiños-Landin, A. Fischer, N. A. Söker, F. Cichos, R. Kapral, P. Gaspard, M. Ripoll, F. Sagues, A. Doostmohammadi, J. M. Yeomans, I. S. Aranson, C. Bechinger, H. Stark, C. K. Hemelrijk, F. J. Nedelec, T. Sarkar, T. Aryaksama, M. Lacroix, G. Duclos, V. Yashunsky, P. Silberzan, M. Arroyo, and S. Kale, J. Phys.: Condens. Matter 32, 193001 (2020). 10.1088/1361-648x/ab6348
G. Szamel, E. Flenner, and L. Berthier, Phys. Rev. E 91, 062304 (2015). 10.1103/physreve.91.062304
M. Rein and T. Speck, Eur. Phys. J. E 39, 84 (2016). 10.1140/epje/i2016-16084-7
R. Wittmann, U. M. B. Marconi, C. Maggi, and J. M. Brader, J. Stat. Mech. 2017, 113208. 10.1088/1742-5468/aa8c37
G. Szamel, J. Chem. Phys. 150, 124901 (2019). 10.1063/1.5085752
L. Tociu, G. Rassolov, E. Fodor, and S. Vaikuntanathan, J. Chem. Phys. 157, 014902 (2022). 10.1063/5.0096710
R. Wittmann, C. Maggi, A. Sharma, A. Scacchi, J. M. Brader, and U. M. B. Marconi, J. Stat. Mech. 2017, 113207. 10.1088/1742-5468/aa8c1f
T. Harada and S.-i. Sasa, Phys. Rev. Lett. 95, 130602 (2005). 10.1103/physrevlett.95.130602
S. Toyabe, T. Okamoto, T. Watanabe-Nakayama, H. Taketani, S. Kudo, and E. Muneyuki, Phys. Rev. Lett. 104, 198103 (2010). 10.1103/physrevlett.104.198103
É. Fodor, W. W. Ahmed, M. Almonacid, M. Bussonnier, N. S. Gov, M.-H. Verlhac, T. Betz, P. Visco, and F. van Wijland, Europhys. Lett. 116, 30008 c62 (2016). 10.1209/0295-5075/116/30008
C. Nardini, É. Fodor, E. Tjhung, F. van Wijland, J. Tailleur, and M. E. Cates, Phys. Rev. X 7, 021007 (2017). 10.1103/physrevx.7.021007
T. Ariga, M. Tomishige, and D. Mizuno, Phys. Rev. Lett. 121, 218101 (2018). 10.1103/physrevlett.121.218101
A. C. Barato and U. Seifert, Phys. Rev. Lett. 114, 158101 (2015). 10.1103/physrevlett.114.158101
T. R. Gingrich, J. M. Horowitz, N. Perunov, and J. L. England, Phys. Rev. Lett. 116, 120601 (2016). 10.1103/physrevlett.116.120601
J. Gladrow, N. Fakhri, F. C. MacKintosh, C. F. Schmidt, and C. P. Broedersz, Phys. Rev. Lett. 116, 248301 (2016). 10.1103/physrevlett.116.248301
J. Li, J. M. Horowitz, T. R. Gingrich, and N. Fakhri, Nat. Commun. 10, 1666 (2019). 10.1038/s41467-019-09631-x
É. Roldán, J. Barral, P. Martin, J. M. R. Parrondo, and F. Jülicher, New J. Phys. 23, 083013 (2021). 10.1088/1367-2630/ac0f18
I. A. Martínez, G. Bisker, J. M. Horowitz, and J. M. R. Parrondo, Nat. Commun. 10, 3542 (2019). 10.1038/s41467-019-11051-w
G. Szamel, Phys. Rev. E 90, 012111 (2014). 10.1103/physreve.90.012111
C. Maggi, U. M. B. Marconi, N. Gnan, and R. Di Leonardo, Sci. Rep. 5, 10742 (2015). 10.1038/srep10742
E. Fodor, C. Nardini, M. E. Cates, J. Tailleur, P. Visco, and F. van Wijland, Phys. Rev. Lett. 117, 038103 (2016). 10.1103/physrevlett.117.038103
K. Sekimoto, Prog. Theor. Phys. Suppl. 130, 17 (1998). 10.1143/ptps.130.17
U. Seifert, Rep. Prog. Phys. 75, 126001 (2012). 10.1088/0034-4885/75/12/126001
J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, 4th ed. (Academic Press, Oxford, 2013).
B. C. van Zuiden, J. Paulose, W. T. M. Irvine, D. Bartolo, and V. Vitelli, Proc. Natl. Acad. Sci. U. S. A. 113, 12919 (2016). 10.1073/pnas.1609572113
G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, and L. Zdeborová, Rev. Mod. Phys. 91, 045002 (2019). 10.1103/revmodphys.91.045002
K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, and A. Walsh, Nature 559, 547 (2018). 10.1038/s41586-018-0337-2
P. Schwaller, T. Laino, T. Gaudin, P. Bolgar, C. A. Hunter, C. Bekas, and A. A. Lee, ACS Cent. Sci. 5, 1572 (2019). 10.1021/acscentsci.9b00576
F. Cichos, K. Gustavsson, B. Mehlig, and G. Volpe, Nat. Mach. Intell. 2, 94 (2020). 10.1038/s42256-020-0146-9
C. Casert, T. Vieijra, J. Nys, and J. Ryckebusch, Phys. Rev. E 99, 023304 (2019). 10.1103/physreve.99.023304
H. Zhao, B. D. Storey, R. D. Braatz, and M. Z. Bazant, Phys. Rev. Lett. 124, 060201 (2020). 10.1103/physrevlett.124.060201
D. B. Brückner, P. Ronceray, and C. P. Broedersz, Phys. Rev. Lett. 125, 058103 (2020). 10.1103/physrevlett.125.058103
F. S. Gnesotto, G. Gradziuk, P. Ronceray, and C. P. Broedersz, Nat. Commun. 11, 5378 (2020). 10.1038/s41467-020-18796-9
A. R. Dulaney and J. F. Brady, Soft Matter 17, 6808-6816 (2021). 10.1039/D1SM00266J
A. Seif, M. Hafezi, and C. Jarzynski, Nat. Phys. 17, 105 (2021). 10.1038/s41567-020-1018-2
N. Thomas, T. Smidt, S. M. Kearnes, L. Yang, L. Li, K. Kohlhoff, and P. Riley, arXiv:1802.08219 (2018).
A. Souslov, K. Dasbiswas, M. Fruchart, S. Vaikuntanathan, and V. Vitelli, Phys. Rev. Lett. 122, 128001 (2019). 10.1103/physrevlett.122.128001
F. Chollet et al., "Keras," https://keras.io, 2015.
V. Démery and D. S. Dean, Phys. Rev. E 84, 011148 (2011). 10.1103/PhysRevE.84.011148
V. Démery, O. Bénichou, and H. Jacquin, New J. Phys. 16, 053032 (2014). 10.1088/1367-2630/16/5/053032
D. S. Dean, J. Phys. A: Math. Gen. 29, L613-L617 (1996). 10.1088/0305-4470/29/24/001
D. Chandler, Phys. Rev. E 48, 2898 (1993). 10.1103/physreve.48.2898
See https://github.com/ltociu/structure_dissipation_active_matter for codes for molecular dynamics and machine learning.