blood pressure; human circulatory system; electric circuit simulator; nanosensors; nanosensor flow
Résumé :
[en] Nanotechnologies are advancing precision medicine applications, enhancing the detection and treatment of diseases. Traveling through the human vessels, nanosensors are envisioned to locally detect and actuate on targets very efficiently. In this area, modeling the behavior of traveling nanosensors in the human circulatory system helps developing new mechanisms for medical treatments. This paper explores the accurate modeling of the concentration level of the flowing nanosensors in vessels. We use a Markov chain formulation to predict the stationary distribution of them in the variety of vessel segments. To evaluate the transition probabilities of the Markov chain, we compute the blood flow based on the representation of vessels through electric circuit components. The resulting study reveals the dynamics of the movement of nanosensors in the blood flow yielding further details on their concentration level along vessels.
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
Gómez, Jorge Torres; TU Berlin, Germany
GONZALEZ RIOS, Jorge Luis ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Dressler, Falko; TU Berlin, Germany
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Nanosensor Location in the Human Circulatory System Based on Electric Circuit Representation of Vessels
Date de publication/diffusion :
octobre 2022
Nom de la manifestation :
9th ACM International Conference on Nanoscale Computing and Communication
Organisateur de la manifestation :
Association for Computing Machinery
Lieu de la manifestation :
Barcelona, Espagne
Date de la manifestation :
October 5-7, 2022
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of the 9th ACM International Conference on Nanoscale Computing and Communication
Maison d'édition :
Association for Computing Machinery, New York, NY, USA, Inconnu/non spécifié
Ian F. Akyildiz, Massimiliano Pierobon, and Sasitharan Balasubramaniam. 2019. Moving forward with molecular communication: from theory to human health applications [point of view]. Proc. IEEE 107, 5 (May 2019), 858–865. https://doi.org/10.1109/jproc.2019.2913890
Florian Büther, Immo Traupe, and Sebastian Ebers. 2018. Hop Count Routing: A Routing Algorithm for Resource Constrained, Identity-Free Medical Nanonetworks. In 5th ACM International Conference on Nanoscale Computing and Communication (NANOCOM 2018). ACM, Reykjavík, Iceland. https://doi.org/10.1145/3233188.3233193
Uche A. K. Chude-Okonkwo, Reza Malekian, B. T. Maharaj, and Athanasios V. Vasilakos. 2017. Molecular Communication and Nanonetwork for Targeted Drug Delivery: A Survey. IEEE Communications Surveys & Tutorials 19, 4 (2017), 3046–3096. https://doi.org/10.1109/comst.2017.2705740
Luca Formaggia, Alfio Quarteroni, and Alessandro Veneziani. 2006. The circulatory system: from case studies to mathematical modeling. In Complex Systems in Biomedicine, Alfio Quarteroni, Luca Formaggia, and Alessandro Veneziani (Eds.). Springer Milan, Milano, Italy, 243–287. https://doi.org/10.1007/88-470-0396-2_7
Constantine Gatsonis, James S. Hodges, Robert E. Kaas, and Nozer D. Singpurwalla. 2012. Case Studies in Bayesian Statistics. Vol. II. Springer Science & Business Media.
Raheem Gul. 2016. Mathematical Modeling and Sensitivity Analysis of Lumped-Parameter Model of the Human Cardiovascular System. PhD Thesis. Freien Universität Berlin. Advisor(s) Schütte, Christof and Bernhard, Stefan.
Arthur C. Guyton and Michael. E. Hall. 2015. Guyton and Hall Textbook of Medical Physiology (14 ed.). Elsevier.
William Hayt, Jack Kemmerly, Jamie Phillips, and Steven Durbin. 2019. Engineering Circuit Analysis (9 ed.). McGraw-Hill Education, New York City, NY.
Sophia L. Kalpazidou. 2006. Genesis of Markov Chains by Circuits: The Circuit Chains. In Cycle Representations of Markov Processes (2 ed.), B. Rozovskii (Ed.). Vol. 28. Springer, 17–28.
Filip Lemic, Sergi Abadal, Eduard Alarcón, and Jeroen Famaey. 2021. Toward Location-aware In-body Terahertz Nanonetworks with Energy Harvesting. cs.ET 2101.01952. arXiv.
Tadashi Nakano, Michael J. Moore, Fang Wei, Athanasios V. Vasilakos, and Jianwei Shuai. 2012. Molecular Communication and Networking: Opportunities and Challenges. IEEE Transactions on NanoBioscience 11, 2 (6 2012), 135–148. https://doi.org/10.1109/TNB.2012.2191570
Abraham Noordergraaf, Pieter D. Verdouw, and Herman B.K. Boom. 1963. The use of an analog computer in a circulation model. Progress in Cardiovascular Diseases 5, 5 (March 1963), 419–439. https://doi.org/10.1016/s0033-0620(63)80009-2
Vincent C. Rideout. 1991. Mathematical and Computer Modeling of Physiological Systems. Prentice Hall, Upper Saddle River, NJ.
Yubing Shi, Patricia Lawford, and Rodney Hose. 2011. Review of Zero-D and 1-D Models of Blood Flow in the Cardiovascular System. BioMedical Engineering OnLine 10, 1 (2011), 33. https://doi.org/10.1186/1475-925x-10-33
Jennifer Simonjan, Bige Deniz Unluturk, and Ian F. Akyildiz. 2021. In-body Bionanosensor Localization for Anomaly Detection via Inertial Positioning and THz Backscattering Communication. IEEE Transactions on NanoBioscience (2021), 1–1. https://doi.org/10.1109/tnb.2021.3123972
M. F. Snyder and V. C. Rideout. 1969. Computer Simulation Studies of the Venous Circulation. IEEE Transactions on Biomedical Engineering BME-16, 4 (Oct. 1969), 325–334. https://doi.org/10.1109/tbme.1969.4502663
Jorge Torres Gómez. 2022. Electric Circuit representation of the Human Arteries. https://www.mathworks.com/matlabcentral/fileexchange/109935-electriccircuit-representation-of-the-human-arteries
Jorge Torres Gómez, Anke Kuestner, Ketki Pitke, Jennifer Simonjan, Bige Deniz Unluturk, and Falko Dressler. 2021. A Machine Learning Approach for Abnormality Detection in Blood Vessels via Mobile Nanosensors. In 19th ACM Conference on Embedded Networked Sensor Systems (SenSys 2021), 2nd ACM International Workshop on Nanoscale Computing, Communication, and Applications (NanoCoCoA 2021). ACM, Coimbra, Portugal, 596–602. https://doi.org/10.1145/3485730. 3494037
Jorge Torres Gómez, Regine Wendt, Anke Kuestner, Ketki Pitke, Lukas Stratmann, and Falko Dressler. 2021. Markov Model for the Flow of Nanobots in the Human Circulatory System. In 8th ACM International Conference on Nanoscale Computing and Communication (NANOCOM 2021). ACM, Virtual Conference, 5:1–5:7. https://doi.org/10.1145/3477206.3477477
Lina Zhou, Guangjie Han, and Li Liu. 2017. Pulse-Based Distance Accumulation Localization Algorithm for Wireless Nanosensor Networks. IEEE Access 5 (2017), 14380–14390. https://doi.org/10.1109/access.2017.2732351