stretching directions; Cauchy–Green tensor; near rectilinear halo orbit (NRHO); distant retrograde orbit (DRO); lunar orbit; circular restricted three-body problem (CR3BP); transfer trajectory design; momentum integral
Abstract :
[en] Stable or nearly stable orbits do not generally possess well-distinguished manifold structures that assist in designing trajectories for departing from or arriving onto a periodic orbit. For some potential missions, the orbits of interest are selected as nearly stable to reduce the possibility of rapid departure. However, the linearly stable nature of these orbits is also a drawback for their timely insertion into or departure from the orbit. Stable or nearly stable Near Rectilinear Halo Orbits (NRHOs), Distant Retrograde Orbits (DROs), and lunar orbits offer potential long-horizon trajectories for exploration missions and demand efficient operations. The current investigation focuses on leveraging stretching directions as a tool for departure and trajectory design applications. The magnitude of the state variations along the maximum stretching direction is expected to grow rapidly and, therefore, offers information for efficient departure from the orbit. Similarly, maximum stretching in reverse time enables arrival with a minimal maneuver magnitude.
Disciplines :
Aerospace & aeronautics engineering
Author, co-author :
Muralidharan, Vivek ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Space Robotics
Howell, Kathleen C.
External co-authors :
yes
Language :
English
Title :
Stretching directions in cislunar space: Applications for departures and transfer design
Zimovan, E. M., Howell, K. C., Davis, D. C. Near rectilinear halo orbits and their application in cislunar space. In: Proceedings of the 3rd IAA Conference on Dynamics and Control of Space Systems, Moscow, Russia, 2017: IAA-AAS-DyCoSS3–125.
Guzzetti, D., Zimovan, E. M., Howell, K. C., Davis, D. C. Stationkeeping analysis for spacecraft in lunar near rectilinear halo orbits. In: Proceedings of the 27th AAS/AIAA Space Flight Mechanics Meeting, San Antonio, USA, 2017: AAS 17–395.
Cavallari, I., Petitdemange, R., Lizy-Destrez, S. Transfer from a lunar distant retrograde orbit to Mars through Lyapunov orbits. In: Proceedings of the 27th International Symposium on Space Flight Dynamics, Melbourne, Australia, 2019: 1393–1398.
Martinez, R., Goodliff, K. E., Whitley, R. J. ISECG global exploration roadmap: A stepwise approach to deep space exploration. In: Proceedings of the AIAA SPACE 2013 Conference and Exposition, San Diego, USA, 2013: AIAA 2013–5504.
Mazanek, D. D., Merrill, R. G., Brophy, J. R., Mueller, R. P. Asteroid Redirect Mission concept: A bold approach for utilizing space resources. Acta Astronautica, 2015, 117: 163–171. DOI: 10.1016/j.actaastro.2015.06.018
Prado, P. B., Howell, K. C., Folta, D. An energy-informed adaptive algorithm for low-thrust spacecraft cislunar trajectory design. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, South Lake Tahoe, USA, 2020: AAS 20–579.
Vutukuri, S. Spacecraft trajectory design techniques using resonant orbits. M.S. Thesis. West Lafayette, USA: Purdue University, 2018.
Das-Stuart, A., Howell, K. C., Folta, D. C. Rapid trajectory design in complex environments enabled by reinforcement learning and graph search strategies. Acta Astronautica, 2020, 171: 172–195. DOI: 10.1016/j.actaastro.2019.04.037
Zimovan-Spreen, E. M., Howell, K. C. Dynamical structures nearby NRHOS with applications in cislunar space. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Portland, USA, 2019.
Capdevila, L. R., Howell, K. C. A transfer network linking Earth, Moon, and the triangular libration point regions in the Earth—Moon system. Advances in Space Research, 2018, 62(7): 1826–1852. DOI: 10.1016/j.asr.2018.06.045
Muralidharan, V., Howell, K. C. Stationkeeping in Earth—Moon near rectilinear halo orbits. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, South Lake Tahoe, USA, 2020: AAS 20–642.
Muralidharan, V., Howell, K. C. Orbit maintenance strategy for Earth—Moon halo orbits. In: Proceedings of the 31st AAS/AIAA Spaceflight Mechanics Meeting, Charlotte, North Carolina, USA, 2021: AAS 21–366.
Muralidharan, V. Orbit maintenance strategies for Sun—Earth/Moon libration point missions: Parameter selection for target point and Cauchy—Green tensor approaches. M.S. Thesis. West Lafayette, USA: Purdue University, 2017.
Muralidharan, V. Stretching directions in cislunar space: Stationkeeping and an application to transfer trajectory design. Ph.D. Dissertation. West Lafayette, USA: Purdue University, 2021.
Muralidharan, V., Howell, K. C. Leveraging stretching directions for stationkeeping in Earth—Moon halo orbits. Advances in Space Research, 2022, 69(1): 620–646. DOI: 10.1016/j.asr.2021.10.028
Oshima, K., Campagnola, S., Yam, C. H., Kayama, Y., Kawakatsu, Y., Ozaki, N., Verspieren, Q., Kakihara, K., Oguri, K., Funase, R. EQUULEUS mission analysis: Design of the transfer phase. In: Proceedings of the 31rt International Symposium on Space Technology and Science, Ehime, Japan, 2017: 3–9.
Oguri, K., Oshima, K., Campagnola, S., Kakihara, K., Ozaki, N., Baresi, N., Kawakatsu, Y., Funase, R. EQUULEUS trajectory design. The Journal of the Astronautical Sciences, 2020, 67(3): 950–976. DOI: 10.1007/s40295-019-00206-y
Baresi, N., Dei Tos, D. A., Ikeda, H., Kawakatsu, Y. Trajectory design and maintenance of the Martian Moons eXploration mission around Phobos. Journal of Guidance, Control, and Dynamics, 2020, 44(5): 996–1007. DOI: 10.2514/1.G005041
Spreen, C., Howell, K., Marchand, B. Node placement capability for spacecraft trajectory targeting in an ephemeris model. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Vail, USA, 2015: AAS 15–638.
Short, C. R., Blazevski, D., Howell, K. C., Haller, G. Stretching in phase space and applications in general nonautonomous multi-body problems. Celestial Mechanics and Dynamical Astronomy, 2015, 122(3): 213–238. DOI: 10.1007/s10569-015-9617-4
Szebehely, V. Theory of Orbits: The Restricted Problem of Three Bodies. Elsevier Inc., 1967.
Howell, K. C. Three-dimensional, periodic, ‘halo’ orbits. Celestial Mechanics, 1984, 32(1): 53–71. DOI: 10.1007/BF01358403
Malonek, H. R., de Almeida, R. A note on a generalized Joukowski transformation. Applied Mathematics Letters, 2010, 23(10): 1174–1178. DOI: 10.1016/j.aml.2010.05.006
Haller, G. Lagrangian coherent structures from approximate velocity data. Physics of Fluids, 2002, 14(6): 1851–1861. DOI: 10.1063/1.1477449
Short, C. R., Howell, K. C. Lagrangian coherent structures in various map representations for application to multi-body gravitational regimes. Acta Astronautica, 2014, 94(2): 592–607. DOI: 10.1016/j.actaastro.2013.08.020
Davis, D. C., Phillips, S. M., Howell, K. C., Vutukuri, S., McCarthy, B. P. Stationkeeping and transfer trajectory design for spacecraft in cislunar space. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Stevenson, USA, 2017: AAS 17–826.
Boudad, K. K., Davis, D. C., Howell, K. C. Disposal trajectories from near rectilinear halo orbits. In: Proceedings of the AAS/AIAA Astrodynamics Specialists Conference, Snowbird, USA, 2018: AAS 18–289.
Muralidharan, V., Howell, K. C. Departure and trajectory design applications using stretching directions. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Big Sky, USA, 2021: AAS 21–612.
Riley, K. F., Hobson, M. P., Bence, S. J. Mathematical Methods for Physics and Engineering: A Comprehensive Guide, 3rd edn. Cambridge: Cambridge University Press, 2002. DOI: 10.1017/CBO9781139164979
Howell, K. C., Kakoi, M. Transfers between the Earth—Moon and Sun—Earth systems using manifolds and transit orbits. Acta Astronautica, 2006, 59(1–5): 367–380. DOI: 10.1016/j.actaastro.2006.02.010
Howell, K. C., Beckman, M., Patterson, C., Folta, D. Representations of invariant manifolds for applications in three-body systems. The Journal of the Astronautical Sciences, 2006, 54(1): 69–93. DOI: 10.1007/BF03256477
Haapala, A. F. Trajectory design using periapse maps and invariant manifolds. M.S. Thesis. West Lafayette, USA: Purdue University, 2010.
Stuart, J., Ozimek, M., Howell, K. Optimal, low-thrust, path-constrained transfers between libration point orbits using invariant manifolds. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, Toronto, Canada, 2010: AIAA 2010–7831.
Soldini, S., Colombo, C., Walker, S. J. Solar radiation pressure end-of-life disposal for Libration-point orbits in the elliptic restricted three-body problem. In: Proceedings of the 25th AAS/AIAA Space Flight Mechanics Meeting, Williamsburg, USA, 2015.
Olikara, Z., Gómez Muntané, G., Masdemont Soler, J. End-of-life disposal of libration point orbit spacecraft. In: Proceedings of the 64th International Astronautical Congress, Beijing, China, 2013: 1–13.
Davis, D. C., Boudad, K. K., Phillips, S. M., Howell, K. C. Disposal, deployment, and debris in near rectilinear halo orbits. In: Proceedings of the 29th AAS/AIAA Space Flight Mechanics Meeting, Ka’anapali, USA, 2019: AAS 19–466.
Ward, M. O. A taxonomy of glyph placement strategies for multidimensional data visualization. Information Visualization, 2002, 1(3–4): 194–210. DOI: 10.1057/PALGRAVE.IVS.9500025
Haapala, A. F., Howell, K. C. Representations of higher-dimensional Poincaré maps with applications to spacecraft trajectory design. Acta Astronautica, 2014, 96: 23–41. DOI: 10.1016/j.actaastro.2013.11.019
Prado Pino, B. J. Energy-informed strategies for low-thrust trajectory design in cislunar space. Ph.D. Dissertation. West Lafayette, USA: Purdue University, 2020.
Guzzetti, D., Bosanac, N., Haapala, A., Howell, K. C., Folta, D. C. Rapid trajectory design in the Earth–Moon ephemeris system via an interactive catalog of periodic and quasi-periodic orbits. Acta Astronautica, 2016, 126: 439–455. DOI: 10.1016/j.actaastro.2016.06.029
Pritchett R. E. Strategies for low-thrust transfer design based on direct collocation techniques. Ph.D. Dissertation. West Lafayette, USA: Purdue University Purdue University, 2020.
Lu, L., Li, H. Y., Zhou, W. M., Liu, J. H. Design and analysis of a direct transfer trajectory from a near rectilinear halo orbit to a low lunar orbit. Advances in Space Research, 2021, 67(3): 1143–1154. DOI: 10.1016/j.asr.2020.11.003
Rozek, M., Ogawa, H., Ueda, S., Ikenaga, T. Multi-objective optimisation of NRHO-LLO orbit transfer via surrogate-assisted evolutionary algorithms. In: Proceedings of the 27th International Symposium on Space Flight Dynamics, 2019: 1001–1007.
Thangavelu, C. Transfers between near rectilinear halo orbits and low lunar orbits. M.S. Thesis. Boulder, USA: University of Colorado Boulder, 2019.