Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Methods for increasing the dependability of High-performance, Many-core, System-on-Chips
GRACZYK, Rafal; MEMON, Md Saad; VOLP, Marcus
2022In GRACZYK, Rafal; MEMON, Md Saad; VOLP, Marcus (Eds.) IAC 2022 congress proceedings, 73rd International Astronautical Congress (IAC)
Peer reviewed
 

Documents


Texte intégral
IAC-22,D1,IP,9,x72691.pdf
Postprint Auteur (556.67 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
On-board computing; Dependability; System-on-a-Chip (SoC); Processor Design; Tiled Architecture; Space Systems
Résumé :
[en] Future space exploration and exploitation missions will require significantly increased autonomy of operation for mission planning, decision-making, and adaptive control techniques. Spacecrafts will integrate new processing and compression algorithms that are often augmented with machine learning and artificial intelligence capabilities. This functionality will have to be provided with high levels of robustness, reliability, and dependability for conducting missions successfully. High-reliability requirements for space-grade processors have led to trade-offs in terms of costs, energy efficiency, and performance to obtain robustness. However, while high-performance / low-robustness configurations are acceptable in the Earth's vicinity, where assets remain protected by the planet's magnetosphere, they cease to work in more demanding environments, like cis-lunar or deep space, where high-energy particles will affect modern components heavily, causing temporary or permanent damage and ultimately system failures. The above has led to a situation where state-of-the-art processing elements (processors, co-processors, memories, special purpose accelerators, and field-programmable-gate arrays (FPGAs), all possibly integrated into System-on-a-Chip (SoC) designs) are superior to their high reliability, space-qualified counterparts in terms of processing power or energy efficiency. For example, from modern, state-of-the-art (SOTA) devices, one can expect a 2-3 order-of-magnitude performance per Watts improvement over space-grade equipment. Likewise, one finds a gap of approximately nine technology nodes between devices, which translates into a factor 25 decrease in operations per Watts. In this paper, we demonstrate how to utilize part of this enormous performance advantage to increase the robustness and resilience of otherwise susceptible semiconductor devices while harnessing the remaining processing power to build affordable space systems capable of hosting the compute-intensive functionality that future space missions require. We are bridging this performance-reliability gap by researching the enabling building blocks for constructing reliable and secure, space-ready Systems-on-a-Chip from SOTA processing elements.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
GRACZYK, Rafal ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CritiX
MEMON, Md Saad  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CritiX
VOLP, Marcus  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CritiX
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Methods for increasing the dependability of High-performance, Many-core, System-on-Chips
Date de publication/diffusion :
21 septembre 2022
Nom de la manifestation :
International Astronautical Congress
Organisateur de la manifestation :
International Astronautical Federation
Lieu de la manifestation :
Paris, France
Date de la manifestation :
from 18-09-2022 to 22-09-2022
Manifestation à portée :
International
Titre de l'ouvrage principal :
IAC 2022 congress proceedings, 73rd International Astronautical Congress (IAC)
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Projet FnR :
FNR14689454 - Hypervisor-enforced Radiation Tolerance In Multi-core Socs For Space, 2020 (01/09/2021-31/08/2024) - Marcus Völp
Disponible sur ORBilu :
depuis le 30 septembre 2022

Statistiques


Nombre de vues
361 (dont 70 Unilu)
Nombre de téléchargements
190 (dont 49 Unilu)

citations Scopus®
 
1
citations Scopus®
sans auto-citations
1

Bibliographie


Publications similaires



Contacter ORBilu