[en] We develop a variational principle to determine the quantum controls and initial state that optimizes the quantum Fisher information, the quantity characterizing the precision in quantum metrology. When the set of available controls is limited, the exact optimal initial state and the optimal controls are, in general, dependent on the probe time, a feature missing in the unrestricted case. Yet, for time-independent Hamiltonians with restricted controls, the problem can be approximately reduced to the unconstrained case via Floquet engineering. In particular, we find for magnetometry with a time-independent spin chain containing three-body interactions, even when the controls are restricted to one- and two-body interaction, that the Heisenberg scaling can still be approximately achieved. Our results open the door to investigate quantum metrology under a limited set of available controls, of relevance to many-body quantum metrology in realistic scenarios.
Disciplines :
Physics
Author, co-author :
YANG, Jing ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Pang, Shengshi; School of Physics, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
Chen, Zekai; Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
Jordan, Andrew N.; Institute for Quantum Studies, Chapman University, 1 University Drive, Orange, California 92866, USA ; Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
DEL CAMPO ECHEVARRIA, Adolfo ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
External co-authors :
yes
Language :
English
Title :
Variational principle for optimal quantum controls in quantum metrology
C. W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, New York, 1976).
A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory (Springer Science & Business Media, New York, 2011).
S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439 (1994). PRLTAO 0031-9007 10.1103/PhysRevLett.72.3439
M. G. A. Paris, Int. J. Quantum. Inform. 07, 125 (2009). 0219-7499 10.1142/S0219749909004839
V. Giovannetti, S. Lloyd, and L. Maccone, Nat. Photonics 5, 222 (2011). NPAHBY 1749-4885 10.1038/nphoton.2011.35
H. Yuan and C.-H. F. Fung, Phys. Rev. Lett. 115, 110401 (2015). PRLTAO 0031-9007 10.1103/PhysRevLett.115.110401
H. Yuan, Phys. Rev. Lett. 117, 160801 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.117.160801
S. Pang and A. N. Jordan, Nat. Commun. 8, 14695 (2017). NCAOBW 2041-1723 10.1038/ncomms14695
J. Yang, S. Pang, and A. N. Jordan, Phys. Rev. A 96, 020301(R) (2017). PLRAAN 2469-9926 10.1103/PhysRevA.96.020301
J. Liu and H. Yuan, Phys. Rev. A 96, 012117 (2017). PLRAAN 2469-9926 10.1103/PhysRevA.96.012117
J. Yang, S. Pang, A. del Campo, and A. N. Jordan, Phys. Rev. Research 4, 013133 (2022). PPRHAI 2643-1564 10.1103/PhysRevResearch.4.013133
T. Gefen, A. Rotem, and A. Retzker, Nat. Commun. 10, 4992 (2019). NCAOBW 2041-1723 10.1038/s41467-019-12817-y
M. Naghiloo, A. N. Jordan, and K. W. Murch, Phys. Rev. Lett. 119, 180801 (2017). PRLTAO 0031-9007 10.1103/PhysRevLett.119.180801
M. Demirplak and S. A. Rice, J. Phys. Chem. A 107, 9937 (2003). JPCAFH 1089-5639 10.1021/jp030708a
M. Demirplak and S. A. Rice, J. Phys. Chem. B 109, 6838 (2005). JPCBFK 1520-6106 10.1021/jp040647w
M. Demirplak and S. A. Rice, J. Chem. Phys. 129, 154111 (2008). JCPSA6 0021-9606 10.1063/1.2992152
M. V. Berry, J. Phys. A 42, 365303 (2009). JPAMB5 1751-8113 10.1088/1751-8113/42/36/365303
D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui, S. Martínez-Garaot, and J. G. Muga, Rev. Mod. Phys. 91, 045001 (2019). RMPHAT 0034-6861 10.1103/RevModPhys.91.045001
M. Cabedo-Olaya, J. G. Muga, and S. Martínez-Garaot, Entropy 22, 1251 (2020). ENTRFG 1099-4300 10.3390/e22111251
A. del Campo, M. M. Rams, and W. H. Zurek, Phys. Rev. Lett. 109, 115703 (2012). PRLTAO 0031-9007 10.1103/PhysRevLett.109.115703
A. Carlini, A. Hosoya, T. Koike, and Y. Okudaira, Phys. Rev. A 75, 042308 (2007). PLRAAN 1050-2947 10.1103/PhysRevA.75.042308
A. Carlini, A. Hosoya, T. Koike, and Y. Okudaira, Phys. Rev. Lett. 96, 060503 (2006). PRLTAO 0031-9007 10.1103/PhysRevLett.96.060503
A. T. Rezakhani, W.-J. Kuo, A. Hamma, D. A. Lidar, and P. Zanardi, Phys. Rev. Lett. 103, 080502 (2009). PRLTAO 0031-9007 10.1103/PhysRevLett.103.080502
T. Opatrný and K. Mølmer, New J. Phys. 16, 015025 (2014). NJOPFM 1367-2630 10.1088/1367-2630/16/1/015025
H. Saberi, T. Opatrný, and K. Mølmer, and A. del Campo, Phys. Rev. A 90, 060301(R) (2014). PLRAAN 1050-2947 10.1103/PhysRevA.90.060301
D. Sels and A. Polkovnikov, Proc. Natl. Acad. Sci. U.S.A. 114, E3909 (2017). PNASA6 0027-8424 10.1073/pnas.1619826114
P. W. Claeys, M. Pandey, D. Sels, and A. Polkovnikov, Phys. Rev. Lett. 123, 090602 (2019). PRLTAO 0031-9007 10.1103/PhysRevLett.123.090602
P. Chandarana, N. N. Hegade, K. Paul, F. Albarrán-Arriagada, E. Solano, A. del Campo, and X. Chen, Phys. Rev. Research 4, 013141 (2022). PPRHAI 2643-1564 10.1103/PhysRevResearch.4.013141
X. Wang, M. Allegra, K. Jacobs, S. Lloyd, C. Lupo, and M. Mohseni, Phys. Rev. Lett. 114, 170501 (2015). PRLTAO 0031-9007 10.1103/PhysRevLett.114.170501
R. Kaubruegger, D. V. Vasilyev, M. Schulte, K. Hammerer, and P. Zoller, Phys. Rev. X 11, 041045 (2021). PRXHAE 2160-3308 10.1103/PhysRevX.11.041045
C. D. Marciniak, T. Feldker, I. Pogorelov, R. Kaubruegger, D. V. Vasilyev, R. van Bijnen, P. Schindler, P. Zoller, R. Blatt, and T. Monz, arXiv:2107.01860.
S. Rahav, I. Gilary, and S. Fishman, Phys. Rev. Lett. 91, 110404 (2003). PRLTAO 0031-9007 10.1103/PhysRevLett.91.110404
N. Goldman and J. Dalibard, Phys. Rev. X 4, 031027 (2014). PRXHAE 2160-3308 10.1103/PhysRevX.4.031027
M. Bukov, L. D'Alessio, and A. Polkovnikov, Adv. Phys. 64, 139 (2015). ADPHAH 0001-8732 10.1080/00018732.2015.1055918
A. Eckardt and E. Anisimovas, New J. Phys. 17, 093039 (2015). NJOPFM 1367-2630 10.1088/1367-2630/17/9/093039
N. Goldman and J. Dalibard, Phys. Rev. X 5, 029902(E) (2015). PRXHAE 2160-3308 10.1103/PhysRevX.5.029902
Z. Chen, J. D. Murphree, and N. P. Bigelow, Phys. Rev. A 101, 013606 (2020). PLRAAN 2469-9926 10.1103/PhysRevA.101.013606
S. Pang and T. A. Brun, Phys. Rev. A 90, 022117 (2014). PLRAAN 1050-2947 10.1103/PhysRevA.90.022117
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.128.160505 for [brief description].
S. L. Braunstein, C. M. Caves, and G. J. Milburn, Ann. Phys. (N.Y.) 247, 135 (1996). APNYA6 0003-4916 10.1006/aphy.1996.0040
S. Boixo, S. T. Flammia, C. M. Caves, and J. M. Geremia, Phys. Rev. Lett. 98, 090401 (2007). PRLTAO 0031-9007 10.1103/PhysRevLett.98.090401
This is the approach pursued in, e.g., the variational approach in shortcut to adiabaticity [26,27]. Another way of handling the constraints on the control Hamiltonian is by introducing the following constraints (Equation presented), (Equation presented) to disallow the terms (Equation presented), where (Equation presented). This way of introducing the constraint is the one used in, e.g., a quantum brachistochrone equation [21,22]. However, in many-body quantum metrology, the number of disallowed nonlocal operators is much more than the allowed local operators. Therefore, the second approach may introduce an intractable number of constraints and we shall pursue the first approach of expanding (Equation presented) in terms of basis operators in the main text.
We choose the normalization (Equation presented) to all orders of (Equation presented), which is different from the normalization (Equation presented) used in Refs. [33,36]. Therefore, the resulting expression of (Equation presented) is different from the one in Refs. [33,36], up to some irrelevant constant, which does not affect the form of the Floquet effective Hamiltonian (Equation presented).
C. H. Tseng, S. Somaroo, Y. Sharf, E. Knill, R. Laflamme, T. F. Havel, and D. G. Cory, Phys. Rev. A 61, 012302 (1999). PLRAAN 1050-2947 10.1103/PhysRevA.61.012302
X. Peng, J. Zhang, J. Du, and D. Suter, Phys. Rev. Lett. 103, 140501 (2009). PRLTAO 0031-9007 10.1103/PhysRevLett.103.140501
M. O. Takahashi, M. G. Yamada, D. Takikawa, T. Mizushima, and S. Fujimoto, Phys. Rev. Research 3, 023189 (2021). PPRHAI 2643-1564 10.1103/PhysRevResearch.3.023189
F. Petiziol, M. Sameti, S. Carretta, S. Wimberger, and F. Mintert, Phys. Rev. Lett. 126, 250504 (2021). PRLTAO 0031-9007 10.1103/PhysRevLett.126.250504
A. de Paz, A. Sharma, A. Chotia, E. Maréchal, J. H. Huckans, P. Pedri, L. Santos, O. Gorceix, L. Vernac, and B. Laburthe-Tolra, Phys. Rev. Lett. 111, 185305 (2013). PRLTAO 0031-9007 10.1103/PhysRevLett.111.185305
A. Signoles, T. Franz, R. Ferracini Alves, M. Gärttner, S. Whitlock, G. Zürn, and M. Weidemüller, Phys. Rev. X 11, 011011 (2021). PRXHAE 2160-3308 10.1103/PhysRevX.11.011011
S. Vishveshwara and D. M. Weld, Phys. Rev. A 103, L051301 (2021). PLRAAN 2469-9926 10.1103/PhysRevA.103.L051301
H. P. Büchler, A. Micheli, and P. Zoller, Nat. Phys. 3, 726 (2007). NPAHAX 1745-2473 10.1038/nphys678
M. M. Rams, P. Sierant, O. Dutta, P. Horodecki, and J. Zakrzewski, Phys. Rev. X 8, 021022 (2018). PRXHAE 2160-3308 10.1103/PhysRevX.8.021022