Variational principle for optimal quantum controls in quantum metrology
English
Yang, Jing[University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS) >]
Pang, Shengshi[School of Physics, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China]
Chen, Zekai[Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA]
Jordan, Andrew N.[Institute for Quantum Studies, Chapman University, 1 University Drive, Orange, California 92866, USA > > > ; Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA]
Del Campo Echevarria, Adolfo[University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS) >]
[en] We develop a variational principle to determine the quantum controls and initial state that optimizes the quantum Fisher information, the quantity characterizing the precision in quantum metrology. When the set of available controls is limited, the exact optimal initial state and the optimal controls are, in general, dependent on the probe time, a feature missing in the unrestricted case. Yet, for time-independent Hamiltonians with restricted controls, the problem can be approximately reduced to the unconstrained case via Floquet engineering. In particular, we find for magnetometry with a time-independent spin chain containing three-body interactions, even when the controls are restricted to one- and two-body interaction, that the Heisenberg scaling can still be approximately achieved. Our results open the door to investigate quantum metrology under a limited set of available controls, of relevance to many-body quantum metrology in realistic scenarios.