[en] In this work we present a new approach to verifiable decryption which converts a 2-party passively secure distributed decryption protocol into a 1-party proof of correct decryption. This leads to an efficient and simple verifiable decryption scheme for lattice-based cryptography, especially for large sets of ciphertexts; it has small size and lightweight computations as we reduce the need of zero-knowledge proofs for each ciphertext. We believe the flexibility of the general technique is interesting and provides attractive trade-offs between complexity and security, in particular for the interactive variant with smaller soundness.
Finally, the protocol requires only very simple operations, making it easy to correctly and securely implement in practice. We suggest concrete parameters for our protocol and give a proof of concept implementation, showing that it is highly practical.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Gjosteen, Kristian; NTNU Trondheim
Haines, Thomas; Australian National University
MUELLER, Johannes ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > APSIA
Adida, B.: Helios: web-based open-audit voting. In: van Oorschot, P.C. (ed.) USENIX Security 2008, pp. 335–348. USENIX Association (2008)
Aguilar Melchor, C., Barrier, J., Guelton, S., Guinet, A., Killijian, M.O., Lepoint, T.: NFLlib: NTT-based fast lattice library. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 341–356. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-29485-8 20
Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptol. 9(3), 169–203 (2015)
Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sub-linear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 2087–2104. ACM Press (2017). https://doi.org/10.1145/3133956.3134104
Aranha, D.F., Baum, C., Gjøsteen, K., Silde, T.: Verifiable mix-nets and distributed decryption for voting from lattice-based assumptions. Cryptology ePrint Archive, Report 2022/422 (2022). https://ia.cr/2022/422
Attema, T., Lyubashevsky, V., Seiler, G.: Practical product proofs for lattice commitments. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 470–499. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1 17
Baum, C., Bootle, J., Cerulli, A., del Pino, R., Groth, J., Lyubashevsky, V.: Sub-linear lattice-based zero-knowledge arguments for arithmetic circuits. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 669–699. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 23
Baum, C., Damgård, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient commitments from structured lattice assumptions. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 368–385. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0 20
Baum, C., Nof, A.: Concretely-efficient zero-knowledge arguments for arithmetic circuits and their application to lattice-based cryptography. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 495–526. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9 17
Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 4
Bendlin, R., Damgård, I.: Threshold decryption and zero-knowledge proofs for lattice-based cryptosystems. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 201–218. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2 13
Bertot, Y., Castéran, P., Huet, G., Paulin-Mohring, C.: Interactive theorem proving and program development: Coq’Art: the calculus of inductive constructions. Texts in theoretical computer science, Springer (2004). https://doi.org/10.1007/978-3-662-07964-5
Bettaieb, S., Schrek, J.: Improved lattice-based threshold ring signature scheme. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 34–51. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38616-9 3
Beullens, W.: Sigma protocols for MQ, PKP and SIS, and fishy signature schemes. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 183– 211. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3 7
Boschini, C., Camenisch, J., Ovsiankin, M., Spooner, N.: Efficient Post-quantum SNARKs for RSIS and RLWE and Their Applications to Privacy. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp. 247–267. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1 14
Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices without FHE. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 1
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012, pp. 309– 325. ACM (2012). https://doi.org/10.1145/2090236.2090262
Groot Bruinderink, L., Hülsing, A., Lange, T., Yarom, Y.: Flush, Gauss, and Reload – a cache attack on the bliss lattice-based signature scheme. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 323–345. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53140-2 16
Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 7
Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority-or: Breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (Sep (2013)
Damgård, I., Orlandi, C., Takahashi, A., Tibouchi, M.: Two-Round n-out-of-n and multi-signatures and trapdoor commitment from lattices. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12710, pp. 99–130. Springer, Cham (2021). https://doi.org/10. 1007/978-3-030-75245-3 5
Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty Computation from Somewhat Homomorphic Encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 38
Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0 28
Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its applications. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 93– 122. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3 4
Espitau, T., Fouque, P.A., Gérard, B., Tibouchi, M.: Side-channel attacks on BLISS lattice-based signatures: Exploiting branch tracing against strongSwan and electromagnetic emanations in microcontrollers. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1857–1874. ACM Press (2017). https://doi.org/10.1145/3133956.3134028
Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12
Gordon, D.M.: A survey of fast exponentiation methods. J. Algorithms 27(1), 129–146 (1998). https://doi.org/10.1006/jagm.1997.0913
Haines, T., Lewis, S.J., Pereira, O., Teague, V.: How not to prove your election outcome. In: 2020 IEEE Symposium on Security and Privacy, pp. 644–660. IEEE Computer Society Press (2020). https://doi.org/10.1109/SP40000.2020.00048
Haines, T., Müller, J.: SoK: techniques for verifiable mix nets. In: Jia, L., Küsters, R. (eds.) CSF 2020 Computer Security Foundations Symposium, pp. 49–64. IEEE Computer Society Press (2020). https://doi.org/10.1109/CSF49147.2020.00012
Heiberg, S., Willemson, J.: Verifiable internet voting in Estonia. In: 6th International Conference on Electronic Voting: Verifying the Vote, EVOTE 2014 (2014)
Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC. pp. 21–30. ACM Press (2007). https://doi.org/10.1145/1250790.1250794
Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7 23
Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 158– 189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 6
Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7 8
Luo, F., Wang, K.: Verifiable decryption for fully homomorphic encryption. In: Chen, L., Manulis, M., Schneider, S. (eds.) ISC 2018. LNCS, vol. 11060, pp. 347– 365. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99136-8 19
Lyubashevsky, V.: Fiat-shamir with aborts: applications to lattice and factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7 35
Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43
Lyubashevsky, V., Nguyen, N.K., Seiler, G.: Shorter lattice-based zero-knowledge proofs via one-time commitments. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12710, pp. 215–241. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75245-3 9
Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 3
Peng, K., Boyd, C., Dawson, E.: Batch zero-knowledge proof and verification and its applications. ACM Trans. Inf. Syst. Secur. 10(2), 6 (2007)
Schwabe, P., et al.: CRYSTALS-KYBER. Tech. rep., National Institute of Standards and Technology (2020), available at https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
Shirazi, F., Simeonovski, M., Asghar, M.R., Backes, M., Diaz, C.: A survey on routing in anonymous communication protocols. ACM Comput. Surv. 51(3) (2018). https://doi.org/10.1145/3182658
Shoup, V.: NTL: a library for doing number theory (2021). https://libntl.org/index.html
Silde, T.: Verifiable Decryption for BGV. Workshop on Advances in Secure Electronic Voting (2022). https://ia.cr/2021/1693