Article (Périodiques scientifiques)
Ten Quick Tips for Biomarker Discovery and Validation Analyses Using Machine Learning
Diaz-Uriarte, R.; Gómez de Lope, Elisa; Giugno, R. et al.
2022In PLoS Computational Biology, 18 (8), p. 1010357
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
journal.pcbi.1010357.pdf
Postprint Éditeur (940.17 kB)
Télécharger

The original publication is available at: https://doi.org/10.1371/journal.pcbi.1010357


Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
biomarkers; machine learning; stratification; prediction; diagnosis; prognosis; data science; decision medicine; decision support
Résumé :
[en] High-throughput experimental methods for biosample profiling and growing collections of clinical and health record data provide ample opportunities for biomarker discovery and medical decision support. However, many of the new data types, including single-cell omics and high-resolution cellular imaging data, also pose particular challenges for data analysis. A high dimensionality of the data in relation to small numbers of available samples, influences of additive and multiplicative noise, large numbers of uninformative or redundant data features, outliers, confounding factors and imbalanced sample group numbers are all common characteristics of current biomedical data collections. While first successes have been achieved in developing clinical decision support tools using multifactorial omics data, there is still an unmet need and great potential for earlier, more accurate and robust diagnostic and prognostic tools for many complex diseases. Here, we provide a set of broadly applicable tips to address some of the most common pitfalls and limitations for biomarker signature development, including supervised and unsupervised machine learning, feature selection and hypothesis testing approaches. In contrast to previous guidelines discussing detailed aspects of quality control, statistics or study reporting, we give a broader overview of the typical challenges and sort the quick tips to address them chronologically by the study phase (starting with study design, then covering consecutive phases of biomarker signature discovery and validation, see also the overview in Fig. 1). While these tips are not comprehensive, they are chosen to cover what we consider as the most frequent, significant, and practically relevant issues and risks in biomarker development. By pointing the reader to further relevant literature on the covered aspects of biomarker discovery and validation, we hope to provide an initial guideline and entry point into the more detailed technical and application-specific aspects of this field.
Centre de recherche :
- Luxembourg Centre for Systems Biomedicine (LCSB): Biomedical Data Science (Glaab Group)
Disciplines :
Biotechnologie
Sciences de la santé humaine: Multidisciplinaire, généralités & autres
Sciences du vivant: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Diaz-Uriarte, R.
Gómez de Lope, Elisa  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Biomedical Data Science
Giugno, R.
Fröhlich, H.
NAZAROV, Petr ;  University of Luxembourg
Nepomuceno-Chamorro, I. A.
RAUSCHENBERGER, Armin ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Biomedical Data Science
GLAAB, Enrico  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Biomedical Data Science
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Ten Quick Tips for Biomarker Discovery and Validation Analyses Using Machine Learning
Date de publication/diffusion :
2022
Titre du périodique :
PLoS Computational Biology
ISSN :
1553-734X
eISSN :
1553-7358
Maison d'édition :
Public Library of Science, San Francisco, Etats-Unis - Californie
Volume/Tome :
18
Fascicule/Saison :
8
Pagination :
e1010357
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Systems Biomedicine
Projet européen :
H2020 - 874825 - PERMIT - PERsonalised MedicIne Trials
Projet FnR :
FNR14599012 - Validating Digital Biomarkers For Better Personalized Treatment Of Parkinson'S Disease, 2020 (01/05/2021-30/04/2024) - Enrico Glaab
Intitulé du projet de recherche :
FNR14599012 > Enrico Glaab > DIGIPD > Validating Digital Biomarkers For Better Personalized Treatment Of Parkinson’S Disease > 01/05/2021 > 30/04/2024 > 2020
Organisme subsidiant :
FNR - Fonds National de la Recherche
European Union - Horizon 2020
CE - Commission Européenne
European Union
Disponible sur ORBilu :
depuis le 26 juillet 2022

Statistiques


Nombre de vues
293 (dont 27 Unilu)
Nombre de téléchargements
72 (dont 2 Unilu)

citations Scopus®
 
29
citations Scopus®
sans auto-citations
25
OpenCitations
 
0
citations OpenAlex
 
38

Bibliographie


Publications similaires



Contacter ORBilu