Public-key Cryptography; Deniability; Quantum Key Distribution
Résumé :
[en] In this work, we explore the notion of deniability in public-key authenticated quantum key exchange (QKE), which allows two parties to establish a shared secret key without leaving any evidence that would bind a session to either party. The deniability property is expressed in terms of being able to simulate the transcripts of a protocol. The ability to deny a message or an action has applications ranging from secure messaging to secure e-voting and whistle-blowing. While quite
well-established in classical cryptography, it remains largely unexplored in the quantum setting. Here, we first present a natural extension of classical definitions in the simulation paradigm to the setting of quantum computation and formalize the requirements for a deniable QKE scheme.
We then prove that the BB84 variant of QKE, when authenticated using a strong designated verifier signature scheme, satisfies deniability and, finally, propose a concrete instantiation.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
VAN WIER, Jeroen ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > APSIA
ATASHPENDAR, Arash ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
ROENNE, Peter ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > APSIA
International Conference on Security for Information Technology and Communications
Date de la manifestation :
23/11/2023
Manifestation à portée :
International
Titre du périodique :
Lecture Notes in Computer Science
ISSN :
0302-9743
eISSN :
1611-3349
Maison d'édition :
Springer, Heidelberg, Allemagne
Titre particulier du numéro :
Innovative Security Solutions for Information Technology and Communications
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Projet FnR :
FNR11689058 - Quantum Communication With Deniability, 2017 (01/07/2018-30/06/2021) - Peter Y. A. Ryan FNR13643617 - Secure, Quantum-safe, Practical Voting Technologies, 2019 (01/04/2020-31/03/2023) - Peter Y. A. Ryan
Atashpendar, A.: From information theory puzzles in deletion channels to deniability in quantum cryptography. Ph.D. thesis, University of Luxembourg, Luxembourg (2019). https://arxiv.org/pdf/2003.11663.pdf
Atashpendar, A., Policharla, G.V., Rønne, P.B., Ryan, P.Y.A.: Revisiting deniability in quantum key exchange. In: Gruschka, N. (ed.) NordSec 2018. LNCS, vol. 11252, pp. 104–120. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03638-6 7
Beaver, D.: On deniability in quantum key exchange. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 352–367. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 23
Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: International Conference on Computers, Systems and Signal Processing (India, December 1984), pp. 175–9 (1984)
Canetti, R., Gennaro, R.: Incoercible multiparty computation. In: Proceedings of 37th Conference on Foundations of Computer Science, pp. 504–513 (1996). https://doi.org/10.1109/SFCS.1996.548509
Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052229
Chen, Y.-A., et al.: An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature 589(7841), 214–219 (2021)
Di Raimondo, M., Gennaro, R., Krawczyk, H.: Deniable authentication and key exchange. In: Proceedings of the 13th ACM Conference on Computer and Communications Security. CCS ’06, pp. 400–409. ACM, Alexandria, Virginia, USA (2006). https://doi.org/10.1145/1180405.1180454
Dwork, C., Naor, M., Sahai, A.: Concurrent Zero-knowledge. J. ACM 51(6), 851– 898 (2004). https://doi.org/10.1145/1039488.1039489
European Quantum Communication Infrastructure (EuroQCI) — Shaping Europe’s digital future. https://digital-strategy.ec.europa.eu/en/policies/european-quantum-communication-infrastructure-euroqci. Accessed 09July 2021
Ioannou, L.M., Mosca, M.: A new spin on quantum cryptography: avoiding trapdoors and embracing public keys. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 255–274. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 17
Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their applications. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143– 154. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 13
Mosca, M., Stebila, D., Ustaoğlu, B.: Quantum key distribution in the classical authenticated key exchange framework. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 136–154. Springer, Heidelberg (2013). https://doi.org/10. 1007/978-3-642-38616-9 9
Noh, G., Jeong, I.R.: Strong designated verifier signature scheme from lattices in the standard model. Secur. Commun. Netw. 9(18), 6202–6214 (2016)
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994). https://doi.org/10.1109/SFCS.1994.365700
of Standards, N.I., (NIST), T.: Post-Quantum Cryptography Standardization (2017). https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization. Accessed 22 July 2019
Sun, X., Tian, H., Wang, Y.: Toward quantum-resistant strong designated verifier signature from isogenies. In: 2012 Fourth International Conference on Intelligent Networking and Collaborative Systems, pp. 292–296 (2012). https://doi.org/10. 1109/iNCoS.2012.70
Watrous, J.: The Theory of Quantum Information. Cambridge University Press, Cambridge (2018)
van Wier, J.: On SDVS sender privacy in the multi-party setting. CoRR abs/ 2107.06119 (2021). arXiv: 2107.06119. https://arxiv.org/abs/2107.06119