Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Experiments of ASR-based mispronunciation detection for children and adult English learners
HOSSEINI KIVANANI, Nina; Gretter, Roberto; Matassoni, Marco et al.
2021In HOSSEINI KIVANANI, Nina; Gretter, Roberto; Matassoni, Marco et al. (Eds.) BNAIC/BeneLearn 2021
Peer reviewed
 

Documents


Texte intégral
bnaic2021_preproceedings.pdf
Postprint Éditeur (56.77 MB)
ISSN 2799-2527
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
ASR; Detection of pronunciation errors; l2 learners
Résumé :
[en] Pronunciation is one of the fundamentals of language learning, and it is considered a primary factor of spoken language when it comes to an understanding and being understood by others. The persistent presence of high error rates in speech recognition domains resulting from mispronunciations motivates us to find alternative techniques for handling mispronunciations. In this study, we develop a mispronunciation assessment system that checks the pronunciation of non-native English speakers, identifies the commonly mispronounced phonemes of Italian learners of English, and presents an evaluation of the non-native pronunciation observed in phonetically annotated speech corpora. In this work, to detect mispronunciations, we used a phone-based ASR implemented using Kaldi. We used two non-native English labeled corpora; (i) a corpus of Italian adults contains 5,867 utterances from 46 speakers, and (ii) a corpus of Italian children consists of 5,268 utterances from 78 children. Our results show that the selected error model can discriminate correct sounds from incorrect sounds in both native and non-native speech, and therefore can be used to detect pronunciation errors in nonnative speech. The phone error rates show improvement in using the error language model. Furthermore, the ASR system shows better accuracy after applying the error model on our selected corpora.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
HOSSEINI KIVANANI, Nina  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Gretter, Roberto
Matassoni, Marco
Falavigna, Giuseppe Daniele
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Experiments of ASR-based mispronunciation detection for children and adult English learners
Date de publication/diffusion :
novembre 2021
Nom de la manifestation :
33rd Benelux Conference on Artificial Intelligence and 30th Belgian-Dutch Conference on Machine Learning
Organisateur de la manifestation :
Proceedings of BNAIC/BeneLearn 2021
Lieu de la manifestation :
Luxembourg
Date de la manifestation :
10/11/2021-12/11/2021
Titre de l'ouvrage principal :
BNAIC/BeneLearn 2021
Auteur, co-auteur :
HOSSEINI KIVANANI, Nina  
Gretter, Roberto
Matassoni, Marco
Falavigna, Giuseppe Daniele
Maison d'édition :
BnL
ISBN/EAN :
0-2799-2527-X
Pagination :
203-216
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 15 juillet 2022

Statistiques


Nombre de vues
130 (dont 9 Unilu)
Nombre de téléchargements
45 (dont 2 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu