Angle of repose; Granular flow; Digital image processing; Granular characterization; Funnel method
Abstract :
[en] The angle of repose is a quantity that delivers direct information about the flowability of granular material. It is therefore desirable to have a reliable experimental method for its determination. Based on the well-established funnel method with continuous mass flow, an extension is introduced which allows increasing the precision and reproducibility of the angle of repose measurements. A modified experimental setup is presented which exploits asymmetries in the alignment of the mechanical setup to gain more precision in the determination of the angle of
repose. This experimental setup is combined with an evaluation method based on automated image analysis. The first results for a set of metal powders are presented.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
JUST, Marvin ; University of Luxembourg ; University of Luxembourg > Faculty of Science, Technology and Medecine (FSTM) ; CERATIZIT Luxembourg S.à r.l.
MEDINA PESCHIUTTA, Alexander ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS) ; CERATIZIT Luxembourg S.à r.l.
Hippe, Frankie; CERATIZIT Luxembourg S.a r.l.
Useldinger, Ralf; CERATIZIT Luxembourg S.a r.l.
BALLER, Jörg ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
External co-authors :
yes
Language :
English
Title :
Determination of the angle of repose of hard metal granules
Publication date :
July 2022
Journal title :
Powder Technology
ISSN :
0032-5910
eISSN :
1873-328X
Publisher :
Elsevier, Lausanne, Netherlands
Volume :
407
Pages :
117695
Peer reviewed :
Peer Reviewed verified by ORBi
Focus Area :
Physics and Materials Science
FnR Project :
FNR13320318 - Metal Powder Flow, 2018 (15/04/2019-14/04/2023) - Marvin Just FNR14187658 - Rheology Of Hard Metal Pastes., 2019 (01/02/2020-31/01/2024) - Alexander Medina Peschiutta
Name of the research project :
MEPFLOW, RHAMEP
Funders :
FNR - Luxembourg National Research Fund CERATIZIT Luxembourg S.à r.l.
Funding text :
This work was funded in whole, or in part, by the Luxembourg National Research Fund and by CERATIZIT Luxembourg S.à r.l. with two Industrial Fellowships grants. Grant acronyms and references are MEPFLOW [13320318] and RHAMEP [14187658].
Schulze, D., Pulver und Schüttgüter: Fließeigenschaften und Handhabung. 3rd ed., 2014, Springer Vieweg, Heidelberg, 10.1007/978-3-642-53885-8.
Jan, S., Jan, K., Saxena, D., Flow property measurement of rice flour- a review. MATEC Web Conf., 57, 2016, 10.1051/matecconf/20165704004.
Ganesan, V., Rosentrater, K.A., Muthukumarappan, K., Flowability and handling characteristics of bulk solids and powders - a review with implications for DDGS. Biosyst. Eng. 101 (2008), 425–435, 10.1016/j.biosystemseng.2008.09.008.
Kempkes, M., Vetter, T., Mazzotti, M., Measurement of 3D particle size distributions by stereoscopic imaging. Chem. Eng. Sci. 65 (2010), 1362–1373, 10.1016/j.ces.2009.10.008.
Lyu, F., Thomas, M., Hendriks, W.H., van der Poel, A.F.B., Size reduction in feed technology and methods for determining, expressing and predicting particle size: a review. Anim. Feed Sci. Technol., 261, 2020, 114347, 10.1016/j.anifeedsci.2019.114347.
Idroas, M., Abdul Rahim, R., Fazalul Rahiman, M.H., Ibrahim, M.N., Optical tomography system based on charge-coupled device linear image sensors: particle size measurement. Sensors Actuators B Chem. 156 (2011), 572–577, 10.1016/j.snb.2011.02.001.
Zhang, S., Tekeste, M.Z., Li, Y., Gaul, A., Zhu, D., Liao, J., Scaled-up rice grain modelling for DEM calibration and the validation of hopper flow. Biosyst. Eng. 194 (2020), 196–212, 10.1016/j.biosystemseng.2020.03.018.
Li, C., Honeyands, T., O'Dea, D., Moreno-Atanasio, R., The angle of repose and size segregation of iron ore granules: DEM analysis and experimental investigation. Powder Technol. 320 (2017), 257–272, 10.1016/j.powtec.2017.07.045.
Zhou, Z.Y., Zou, R.P., Pinson, D., Yu, A.B., Angle of repose and stress distribution of sandpiles formed with ellipsoidal particles. Granul. Matter 16 (2014), 695–709, 10.1007/s10035-014-0522-4.
Zhou, Y.C., Xu, B.H., Yu, A.B., Zulli, P., An experimental and numerical study of the angle of repose of coarse spheres. Powder Technol. 125 (2002), 45–54, 10.1016/S0032-5910(01)00520-4.
Al-Hashemi, H.M.B., Al-Amoudi, O.S.B., A review on the angle of repose of granular materials. Powder Technol. 330 (2018), 397–417, 10.1016/j.powtec.2018.02.003.
Fracek, J., Złobecki, A., Zemanek, J., Assessment of angle of repose of granular plant material using computer image analysis. J. Food Eng. 83 (2007), 17–22, 10.1016/j.jfoodeng.2006.11.028.
Beverloo, W.A., Leniger, H.A., van de Velde, J., The flow of granular solids through orifices. Chem. Eng. Sci. 15 (1961), 260–269, 10.1016/0009-2509(61)85030-6.
Cheng, N., Zhao, K., Difference between static and dynamic angle of repose of uniform sediment grains. Int. J. Sediment Res. 32 (2017), 149–154, 10.1016/j.ijsrc.2016.09.001.
Miura, K., Maeda, K., Toki, S., Method of measurement for the angle of repose of sands. Japanese Geotech. Soc. 37 (1997), 89–96, 10.3208/sandf.37.2_89.
Zaalouk, A.K., Zabady, F.I., Effect of moisture content on angle of repose and friction coefficient of wheat grain. Misr J. Agric. Eng 26 (2009), 418–427, 10.21608/mjae.2020.110159.
Bhople, S., Kumar, A., Haldkar, P., Effect of moisture content on angle of repose for different cereals and pulses. Int. J. Chem. Stud. 5 (2017), 2283–2286 https://www.chemijournal.com/archives/?year=2017&vol=5&issue=5&ArticleId=1253.
Wang, W., Zhang, J., Yang, S., Zhang, H., Yang, H., Yue, G., Experimental study on the angle of repose of pulverized coal. Particuology. 8 (2010), 482–485, 10.1016/j.partic.2010.07.008.
Lumay, G., Boschini, F., Traina, K., Bontempi, S., Remy, J., Cloots, R., Vandewalle, N., Measuring the flowing properties of powders and grains. Powder Technol. 224 (2012), 19–27, 10.1016/j.powtec.2012.02.015.
Elekes, F., Parteli, E.J.R., An expression for the angle of repose of dry cohesive granular materials on Earth and in planetary environments. Proc. Natl. Acad. Sci., 118, 2021, 10.1073/pnas.2107965118.
Wójcik, A., Klapa, P., Mitka, B., Sładek, J., The use of the photogrammetric method for measurement of the repose angle of granular materials. Measurement. 115 (2018), 19–26, 10.1016/j.measurement.2017.10.005.
Wójcik, A., Klapa, P., Mitka, B., Piech, I., The use of TLS and UAV methods for measurement of the repose angle of granular materials in terrain conditions. Measurement. 146 (2019), 780–791, 10.1016/j.measurement.2019.07.015.
Müller, D., Fimbinger, E., Brand, C., Algorithm for the determination of the angle of repose in bulk material analysis. Powder Technol. 383 (2021), 598–605, 10.1016/J.POWTEC.2021.01.010.
Willibald, C., Löwe, H., Theile, T., Dual, J., Schneebeli, M., Angle of repose experiments with snow: role of grain shape and cohesion. J. Glaciol. 66 (2020), 658–666, 10.1017/jog.2020.36.
Li, P., Ucgul, M., Lee, S., Saunders, C., A new approach for the automatic measurement of the angle of repose of granular materials with maximal least square using digital image processing. Comput. Electron. Agric., 172, 2020, 105356, 10.1016/j.compag.2020.105356.
Neveu, A., Francqui, F., Lumay, G., Packing dynamics of powders at high temperature. EPJ Web Conf, 2021, 10.1051/epjconf/202124912001.
Wang, Y.M., Li, Y., Zheng, J.B., A camera calibration technique based on OpenCV. Proc. - 3rd Int. Conf. Inf. Sci. Interact. Sci. ICIS 2010 (2010), 403–406, 10.1109/ICICIS.2010.5534797.
Li, P., Lee, S.H., Park, J.S., Development of a global batch clustering with gradient descent and initial parameters in colour image classification. IET Image Process. 13 (2019), 161–174, 10.1049/iet-ipr.2018.5956.
Xiao, Y.L., Specht, E., Mellmann, J., Experimental study of the lower and upper angles of repose of granular materials in rotating drums. Powder Technol. 154 (2005), 125–131, 10.1016/j.powtec.2005.04.040.
Mellmann, J., The transverse motion of solids in rotating cylinders — forms of motion and transition behavior. Powder Technol. 118 (2001), 251–270, 10.1016/S0032-5910(00)00402-2.
Bradski, G., The OpenCV Library, Dr. Dobb's J. Softw. Tools. 2000 https://opencv.org/.
Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournape, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., Vijaykumar, A., Bardelli, A. Pietro, Rothberg, A., Hilboll, A., Kloeckner, A., Scopatz, A., Lee, A., Rokem, A., Woods, C.N., Fulton, C., Masson, C., Häggström, C., Fitzgerald, C., Nicholson, D.A., Hagen, D.R., Pasechnik, D.V., Olivetti, E., Martin, E., Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price, G.A., Ingold, G., Allen, G.E., Lee, G.R., Dren, H., Probst, I., Dietrich, J.P., Silterra, J., Webber, J.T., Slavič, J., Nothman, J., Buchner, J., Kulick, J., Schönberger, J.L., de Miranda Cardoso, J.V., Reimer, J., Harrington, J., Rodríguez, J.L.C., NunezIglesias, J., Kuczynski, J., Tritz, K., Thoma, M., Newville, M., Kümmerer, M., Bolingbroke, M., Tartre, M., Pak, M., Smith, N.J., Nowaczyk, N., Shebanov, N., Pavlyk, O., Brodtkorb, P.A., Lee, P., McGibbon, R.T., Feldber, R., Lewis, S., Tygier, S., Sievert, S., Vigna, S., Peterson, S., More, S., Pudlik, T., Oshima, T., Pingel, T.J., Robitaille, T.P., Spura, T., Jones, T.R., Cera, T., Leslie, T., Zito, T., Krss, T., Upadhyay, U., Halchenko, Y.O., VázquezBaeza, Y., SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17 (2020), 261–272, 10.1038/s41592-019-0686-2.
Walfish, S., A review of statistical outlier methods. Pharm. Technol. 30 (2006), 82–88 https://www.pharmtech.com/view/review-statistical-outlier-methods.
Pirson, M., Dramaix, M., Leclercq, P., Jackson, T., Analysis of cost outliers within APR-DRGs in a Belgian general hospital: two complementary approaches. Health Policy (New. York). 76 (2006), 13–25, 10.1016/j.healthpol.2005.04.008.
Kim, H.S., Park, S., Koo, J.S., Kim, S., Kim, J.Y., Nam, S., Park, H.S., Il Kim, S., Park, B.W., Risk factors associated with discordant Ki-67 levels between preoperative biopsy and postoperative surgical specimens in breast cancers. PLoS One 11 (2016), 1–10, 10.1371/journal.pone.0151054.
Macho, O., Demková, K., Gabrišová, L., Cierny, M., Mužíková, J., Galbavá, P., Nižnanská, Ž., Blaško, J., Peciar, P., Fekete, R., Peciar, M., Analysis of static angle of repose with respect to powder material properties. 60, 2020, 73–80, 10.14311/AP.2020.60.0073.
Wong, A.C.-Y., Use of angle of repose and bulk densities for powder characterization and the prediction of minimum fluidization and minimum bubbling velocities. Chem. Eng. Sci. 57 (2002), 2635–2640, 10.1016/S0009-2509(02)00150-1.
Pillitteri, S., Opsomer, E., Lumay, G., Vandewalle, N., How size ratio and segregation affect the packing of binary granular mixtures. Soft Matter 16 (2020), 9094–9100, 10.1039/d0sm00939c.
Mcgeary, R.K., Mechanical packing of spherical particles. J. Am. Ceram. Soc. 44 (1961), 513–522, 10.1111/j.1151-2916.1961.tb13716.x.
Meng, L., Lu, P., Li, S., Packing properties of binary mixtures in disordered sphere systems. Particuology. 16 (2014), 155–166, 10.1016/j.partic.2014.02.010.
Santomaso, A., Lazzaro, P., Canu, P., Powder flowability and density ratios: the impact of granules packing. Chem. Eng. Sci. 58 (2003), 2857–2874, 10.1016/S0009-2509(03)00137-4.
Garcia, J., Strelsky, W., Process development and scale up of cemented carbide production. Scale-up in Metallurgy, 1st, 2010, Verlag ProcessEng Engineering GmbH, 235–266 https://www.researchgate.net/publication/259581384_Process_development_and_scale_up_of_cemented_carbide_production.
Tang, X., Zakhvatayeva, A., Zhang, L., Wu, Z.-F., Sun, P., Wu, C.-Y., Flow behaviour of pharmaceutical powders during rotary die filling with a paddle feeder. Int. J. Pharm., 585, 2020, 119547, 10.1016/j.ijpharm.2020.119547.
Palzer, St., Agglomeration of pharmaceutical, detergent, chemical and food powders — similarities and differences of materials and processes. Powder Technol. 206:1–2 (2011), 2–17, 10.1016/j.powtec.2010.05.006.
Pasquazzi, A., Weissenbacher, R., Oehlers, M., Improvement of the compressibility of cobalt powders for the cemented carbide industry. Int. J. Refract. Met. Hard Mater. 62:Part B (2017), 118–125, 10.1016/j.ijrmhm.2016.06.016.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.