Reference : Efficient optimization-based quadrature for variational discretization of nonlocal pr...
Scientific journals : Article
Engineering, computing & technology : Multidisciplinary, general & others
Computational Sciences
Efficient optimization-based quadrature for variational discretization of nonlocal problems
Pasetto, Marco [University of Califronia, San Diego > Department of Mechanical and Aerospace Engineering]
Shen, Zhaoxiang mailto [University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)]
D'Elia, Marta [Sandia National Laboratories > Computational Science and Analysis]
Tian, Xiaochuan [University of California, San Diego > Department of Mathematics]
Trask, Nathaniel [Sandia National Laboratories > Center for Computing Research]
Kamensky, David [University of California, San Diego > Department of Mechanical and Aerospace Engineering]
Computer Methods in Applied Mechanics and Engineering
Elsevier B.V.
Yes (verified by ORBilu)
[en] Finite element discretizations ; Generalized moving least squares ; Nonlocal models ; Numerical quadrature ; Peridynamics
[en] Casting nonlocal problems in variational form and discretizing them with the finite element (FE) method facilitates the use of nonlocal vector calculus to prove well-posedness, convergence, and stability of such schemes. Employing an FE method also facilitates meshing of complicated domain geometries and coupling with FE methods for local problems. However, nonlocal weak problems involve the computation of a double-integral, which is computationally expensive and presents several challenges. In particular, the inner integral of the variational form associated with the stiffness matrix is defined over the intersections of FE mesh elements with a ball of radius δ, where δ is the range of nonlocal interaction. Identifying and parameterizing these intersections is a nontrivial computational geometry problem. In this work, we propose a quadrature technique where the inner integration is performed using quadrature points distributed over the full ball, without regard for how it intersects elements, and weights are computed based on the generalized moving least squares method. Thus, as opposed to all previously employed methods, our technique does not require element-by-element integration and fully circumvents the computation of element–ball intersections. This paper considers one- and two-dimensional implementations of piecewise linear continuous FE approximations, focusing on the case where the element size h and the nonlocal radius δ are proportional, as is typical of practical computations. When boundary conditions are treated carefully and the outer integral of the variational form is computed accurately, the proposed method is asymptotically compatible in the limit of h∼δ→0, featuring at least first-order convergence in L2 for all dimensions, using both uniform and nonuniform grids. Moreover, in the case of uniform grids, the proposed method passes a patch test and, according to numerical evidence, exhibits an optimal, second-order convergence rate. Our numerical tests also indicate that, even for nonuniform grids, second-order convergence can be observed over a substantial pre-asymptotic regime. © 2022 Elsevier B.V.

File(s) associated to this reference

Fulltext file(s):

Open access
2201.12391.pdfAuthor preprint2.41 MBView/Open

Bookmark and Share SFX Query

All documents in ORBilu are protected by a user license.