Communication publiée dans un périodique (Colloques, congrès, conférences scientifiques et actes)
Deep Learning-Based Device-Free Localization in Wireless Sensor Networks
Abdullah, Osamah; AL-HRAISHAWI, Hayder; CHATZINOTAS, Symeon
2023In 2023 IEEE Wireless Communications and Networking Conference (WCNC)
Peer reviewed
 

Documents


Texte intégral
Convolutional_Deep_Belief_Network.pdf
Preprint Auteur (395.06 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Device-free localization; deep learning; data dimensionality reduction; convolutional deep belief network; autoencoder; wireless sensor networks
Résumé :
[en] Location-based services are witnessing a rise in popularity owing to their key features of delivering personalized digital experience. The recent developments in wireless sensing techniques make the realization of device-free localization (DFL) feasible within wireless sensor network (WSN) architectures. The DFL is an emerging technology that utilizes radio signal information for detecting and positioning a passive movable target without attached devices. However, determining the characteristics of the massive raw signals and extracting meaningful discriminative features relevant to the localization are highly intricate tasks due to the different patterns associated with different locations. To overcome these issues, deep learning (DL) techniques can be utilized here owing to their remarkable performance gains in similar practical problems. In this direction, we propose a DFL framework consists of multiple convolutional neural network (CNN) layers along with deep autoencoders based on the restricted Boltzmann machines (RBM) to construct a convolutional deep belief network (CDBN) for features recognition and extracting. Each CNN layer has stochastic pooling to sample down the feature map and reduced the dimensions of the required data without losing important information. This dimensionality reduction can alleviate the heavy computation while ensuring precise localization. The proposed framework is validated using real experimental dataset. The results show that the proposed model is able to achieve a high accuracy of 98% with reduced data dimensions and low signal-to-noise ratios (SNRs).
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
Abdullah, Osamah;  Alma'moon University College, Baghdad, Iraq > Department of Electrical Engineering
AL-HRAISHAWI, Hayder  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
CHATZINOTAS, Symeon  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Deep Learning-Based Device-Free Localization in Wireless Sensor Networks
Date de publication/diffusion :
2023
Nom de la manifestation :
IEEE Wireless Communications and Networking Conference (WCNC)
Organisateur de la manifestation :
Institute of Electrical and Electronics Engineers
Lieu de la manifestation :
Glasgow (Scotland), Royaume-Uni
Date de la manifestation :
26-03-2023 to 29-03-2023
Manifestation à portée :
International
Titre du périodique :
2023 IEEE Wireless Communications and Networking Conference (WCNC)
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Disponible sur ORBilu :
depuis le 11 juillet 2022

Statistiques


Nombre de vues
238 (dont 18 Unilu)
Nombre de téléchargements
89 (dont 2 Unilu)

citations Scopus®
 
12
citations Scopus®
sans auto-citations
9
OpenCitations
 
2
citations OpenAlex
 
14

Bibliographie


Publications similaires



Contacter ORBilu