Communication orale non publiée/Abstract (Colloques, congrès, conférences scientifiques et actes)
Unsupervised Learning for User Scheduling in Multibeam Precoded GEO Satellite Systems
ORTIZ GOMEZ, Flor de Guadalupe; LAGUNAS, Eva; CHATZINOTAS, Symeon
2022European Conference on Networks and Communications (EuCNC) and the 6G Summit
 

Documents


Texte intégral
User_scheduling_based_on_Clustering_Techniques (43).pdf
Preprint Auteur (2.05 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
satellite communications; multicast precoding; unsupervised learning
Résumé :
[en] Future generation SatCom multibeam architectures will extensively exploit full-frequency reuse schemes together with interference management techniques, such as precoding, to dramatically increase spectral efficiency performance. Precoding is very sensitive to user scheduling, suggesting a joint precoding and user scheduling design to achieve optimal performance. However, the joint design requires solving a highly complex optimization problem which is unreasonable for practical systems. Even for suboptimal disjoint scheduling designs, the complexity is still significant. To achieve a good compromise between performance and complexity, we investigate the applicability of Machine Learning (ML) for the aforementioned problem. We propose three clustering algorithms based on Unsupervised Learning (UL) that facilitate the user scheduling decisions while maximizing the system performance in terms of throughput. Numerical simulations compare the three proposed algorithms (K-means, Hierarchical clustering, and Self-Organization) with the conventional geographic scheduling and identify the main trade-offs.
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
ORTIZ GOMEZ, Flor de Guadalupe  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
LAGUNAS, Eva  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
CHATZINOTAS, Symeon  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Unsupervised Learning for User Scheduling in Multibeam Precoded GEO Satellite Systems
Date de publication/diffusion :
09 juin 2022
Nom de la manifestation :
European Conference on Networks and Communications (EuCNC) and the 6G Summit
Date de la manifestation :
from 7-06-2022 to 10-06-2022
Manifestation à portée :
International
Focus Area :
Computational Sciences
Projet FnR :
FNR16193290 - Leveraging Artificial Intelligence To Empower The Next Generation Of Satellite Communications, 2021 (01/09/2022-31/08/2025) - Eva Lagunas
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 13 juin 2022

Statistiques


Nombre de vues
348 (dont 57 Unilu)
Nombre de téléchargements
3 (dont 2 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu