Thèse de doctorat (Mémoires et thèses)
Optimization of cost and capacity of broadband satellite system and resources management using Machine Learning techniques
ORTIZ GOMEZ, Flor de Guadalupe
2021
 

Documents


Texte intégral
Full Thesis.pdf
Postprint Éditeur (8.27 MB)
Demander un accès

The original publication is available at https://oa.upm.es/68892/


Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Satellite communications; resources management; Machine Learning
Résumé :
[en] Very High Throughput Satellite (VHTS) systems have an important role to play as a complement to future 5G terrestrial networks to meet the growing traffic demand. In the near future, VHTS systems are expected to reach a transmission capacity of 1 Tbps based on frequency reuse/polarization and multibeam coverage schemes. However, the traffic demand in the service area is not uniform and is also changing throughout the day. This means that with a traditional payload, some beams have insufficient resources and others have wasted resources. One solution to this problem is flexible payloads that allow satellite resources to be modified according to traffic demand. According to operators, the main challenges in Satellite Communications (SatComs) is to achieve new generation VHTS systems capable of satisfying traffic demand and to know how to manage resources in an optimal and autonomous way, thus emerging the problem of Dynamic Resource Management (DRM). With this in mind, this thesis studies the optimization for the design of new generation VHTS systems. The study is divided into two parts, satellites with fixed payload and satellites with flexible payload. For the first part, an optimization method is developed that minimizes the cost per Gbps in orbit and maximizes the capacity per beam, as a function of the number of beams, user G/T and annual availability. As an intermediate step between flexibility and a fixed system, the possibility of having a payload that provides coverage with irregularly sized beams depending on traffic demand is studied. While, for flexible systems, new optimization techniques belonging to Machine Learning are studied to manage resources dynamically and autonomously in the system. The results of this thesis provide new contributions for the design of new generations of VHTS broadband satellites and open a possibility for new research lines
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
ORTIZ GOMEZ, Flor de Guadalupe  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Langue du document :
Anglais
Titre :
Optimization of cost and capacity of broadband satellite system and resources management using Machine Learning techniques
Date de soutenance :
septembre 2021
Institution :
Universidad Politecnica de Madrid, Madrid, Espagne
Intitulé du diplôme :
PhD in Communications Technologies and Systems
Promoteur :
Martinez, Ramon
Landeros, Salvador
Président du jury :
Calvo, Miguel
Secrétaire :
Salas-Natera, Miguel A.
Membre du jury :
Vanelli-Coralli, Alessandro
LAGUNAS, Eva  
de Cola, Tomaso
URL complémentaire :
Disponible sur ORBilu :
depuis le 28 mars 2022

Statistiques


Nombre de vues
190 (dont 14 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations OpenAlex
 
1

Bibliographie


Publications similaires



Contacter ORBilu