charge density waves; excitonic insulator; spontaneous symmetry breaking
Résumé :
[en] The charge density wave instability in one-dimensional semimetals is usually explained through a Peierls-like mechanism, where the coupling of electrons and phonons induces a periodic lattice distortion along certain modes of vibration, leading to a gap opening in the electronic band structure and to a lowering of the symmetry of the lattice. In this work, we study two prototypical Peierls systems: the one-dimensional carbon chain and the monatomic hydrogen chain with accurate ab initio calculations based on quantum Monte Carlo and hybrid density functional theory. We demonstrate that in one-dimensional semimetals at T=0, a purely electronic instability can exist independently of a lattice distortion. It is induced by spontaneous formation of low energy electron-hole pairs resulting in the electronic band gap opening, i.e., the destabilization of the semimetallic phase is due to an excitonic mechanism.
Centre de recherche :
ULHPC - University of Luxembourg: High Performance Computing
Disciplines :
Physique
Auteur, co-auteur :
BARBORINI, Matteo ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Calandra, Matteo
Mauri, Francesco
WIRTZ, Ludger ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
CUDAZZO, Pier Luigi ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Excitonic-insulator instability and Peierls distortion in one-dimensional semimetals
Date de publication/diffusion :
2022
Titre du périodique :
Physical Review. B
ISSN :
2469-9950
eISSN :
2469-9969
Maison d'édition :
American Physical Society
Volume/Tome :
105
Fascicule/Saison :
7
Pagination :
075122
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Physics and Materials Science Computational Sciences
Projet FnR :
FNR13376969 - Anharmonic And Exchange Interactions In Phonon Spectra, 2018 (01/01/2020-30/06/2024) - Ludger Wirtz
K. Rossnagel, J. Phys.: Condens. Matter 23, 213001 (2011) 0953-8984 10.1088/0953-8984/23/21/213001.
R. Peierls, More Surprises in Theoretical Physics (Princeton University Press, Princeton, NJ, 1991).
R. Peierls, Ann. Phys. 395, 1055 (1929) 0003-3804 10.1002/andp.19293950803.
A. W. Overhauser, Phys. Rev. Lett. 4, 462 (1960) 0031-9007 10.1103/PhysRevLett.4.462;
A. W. Overhauser, Phys. Rev. 167, 691 (1968) 0031-899X 10.1103/PhysRev.167.691;
A. W. Overhauser, Phys. Rev. B 29, 7023 (1984) 0163-1829 10.1103/PhysRevB.29.7023.
L. V. Keldysh and Y. V. Kopaev, Sov. Phys. Solid State. 6, 2219 (1965).
D. Jérome, T. M. Rice, and W. Kohn, Phys. Rev. 158, 462 (1967) 0031-899X 10.1103/PhysRev.158.462.
B. I. Halperin and T. M. Rice, Solid State Phys. 21, 115 (1968) 0081-1947 10.1016/S0081-1947(08)60740-7.
B. Bucher, P. Steiner, and P. Wachter, Phys. Rev. Lett. 67, 2717 (1991) 0031-9007 10.1103/PhysRevLett.67.2717.
F. J. Di Salvo, D. E. Moncton, and J. V. Waszczak, Phys. Rev. B 14, 4321 (1976) 0556-2805 10.1103/PhysRevB.14.4321.
A. Kogar, M. S. Rak, S. Vig, A. A. Husain, F. Flicker, Y. I. Joe, L. Venema, G. J. MacDougall, T. C. Chiang, E. Fradkin, J. van Wezel, and P. Abbamonte, Science 358, 1314 (2017) 0036-8075 10.1126/science.aam6432.
T. M. Rice, Solid State Phys. 32, 1 (1977) 10.1016/S0081-1947(08)60438-5.
J. E. Drut and T. A. Lähde, Phys. Rev. Lett. 102, 026802 (2009) 0031-9007 10.1103/PhysRevLett.102.026802.
A. S. Rodin and A. H. Castro Neto, Phys. Rev. B 88, 195437 (2013) 1098-0121 10.1103/PhysRevB.88.195437.
D. Varsano, S. Sorella, D. Sangalli, M. Barborini, S. Corni, E. Molinari, and M. Rontani, Nat. Commun. 8, 1461 (2017) 2041-1723 10.1038/s41467-017-01660-8.
M. Hellgren, J. Baima, and A. Acheche, Phys. Rev. B 98, 201103 (R) (2018) 2469-9950 10.1103/PhysRevB.98.201103.
M. J. Rice and Y. N. Gartstein, J. Phys.: Condens. Matter 17, 4615 (2005) 0953-8984 10.1088/0953-8984/17/29/003.
M. J. Rice, Synth. Met. 141, 9 (2004) 0379-6779 10.1016/j.synthmet.2003.06.001.
M. J. Rice and Y. N. Gartstein, Synth. Met. 141, 11 (2004) 0379-6779 10.1016/j.synthmet.2003.06.002.
W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Rev. Mod. Phys. 73, 33 (2001) 0034-6861 10.1103/RevModPhys.73.33.
J. Kolorenc and L. Mitas, Rep. Prog. Phys. 74, 026502 (2011) 0034-4885 10.1088/0034-4885/74/2/026502.
F. Becca and S. Sorella, Quantum Monte Carlo Approaches for Correlated Systems (Cambridge University Press, Cambridge, UK, 2017).
K. Nakano, C. Attaccalite, M. Barborini, L. Capriotti, M. Casula, E. Coccia, M. Dagrada, C. Genovese, Y. Luo, G. Mazzola, A. Zen, and S. Sorella, J. Chem. Phys. 152, 204121 (2020) 0021-9606 10.1063/5.0005037.
M. Casula and S. Sorella, J. Chem. Phys. 119, 6500 (2003) 0021-9606 10.1063/1.1604379.
M. Casula, C. Attaccalite, and S. Sorella, J. Chem. Phys. 121, 7110 (2004) 0021-9606 10.1063/1.1794632.
F. Sterpone, L. Spanu, L. Ferraro, S. Sorella, and L. Guidoni, J. Chem. Theory Comput. 4, 1428 (2008) 1549-9618 10.1021/ct800121e.
J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 106, 162 (1957) 0031-899X 10.1103/PhysRev.106.162.
A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963) 0034-6861 10.1103/RevModPhys.35.668.
A. J. Coleman, J. Math. Phys. 6, 1425 (1965) 0022-2488 10.1063/1.1704794.
C. Attaccalite and S. Sorella, Phys. Rev. Lett. 100, 114501 (2008) 0031-9007 10.1103/PhysRevLett.100.114501.
M. Dagrada, S. Karakuzu, V. L. Vildosola, M. Casula, and S. Sorella, Phys. Rev. B 94, 245108 (2016) 2469-9950 10.1103/PhysRevB.94.245108.
A. Zen, E. Coccia, S. Gozem, M. Olivucci, and L. Guidoni, J. Chem. Theory Comput. 11, 992 (2015) 1549-9618 10.1021/ct501122z.
M. Barborini and L. Guidoni, J. Chem. Theory Comput. 11, 508 (2015) 1549-9618 10.1021/ct501157f.
M. Barborini and E. Coccia, J. Chem. Theory Comput. 11, 5696 (2015) 1549-9618 10.1021/acs.jctc.5b00819.
M. Marchi, S. Azadi, C. Casula, and S. Sorella, J. Chem. Phys. 131, 154116 (2009) 0021-9606 10.1063/1.3249966.
M. Burkatzki, C. Filippi, and M. Dolg, J. Chem. Phys. 126, 234105 (2007) 0021-9606 10.1063/1.2741534.
C. J. Umrigar, J. Toulouse, C. Filippi, S. Sorella, and R. G. Hennig, Phys. Rev. Lett. 98, 110201 (2007) 0031-9007 10.1103/PhysRevLett.98.110201.
J. Toulouse and C. J. Umrigar, J. Chem. Phys. 126, 084102 (2007) 0021-9606 10.1063/1.2437215.
S. Sorella, M. Casula, and D. Rocca, J. Chem. Phys. 127, 014105 (2007) 0021-9606 10.1063/1.2746035.
S. Sorella and S. Capriotti, J. Chem. Phys. 133, 234111 (2010) 0021-9606 10.1063/1.3516208.
M. Barborini, S. Sorella, and L. Guidoni, J. Chem. Theory Comput. 8, 1260 (2012) 1549-9618 10.1021/ct200724q.
R. Dovesi, A. Erba, R. Orlando, C. M. Zicovich-Wilson, B. Civalleri, L. Maschio, M. Rérat, S. Casassa, J. Baima, S. Salustro, and B. Kirtman, WIREs Comput. Mol. Sci. 8, e1360 (2018) 1759-0876 10.1002/wcms.1360.
M. F. Peintinger, D. V. Oliveira, and T. Bredow, J. Comput. Chem. 34, 451 (2013) 0192-8651 10.1002/jcc.23153.
T. Yanai, D. P. Tew, and N. C. Handy, Chem. Phys. Lett. 393, 51 (2004) 0009-2614 10.1016/j.cplett.2004.06.011.
S. Yang and M. Kertesz, J. Phys. Chem. A 110, 9771 (2006) 1089-5639 10.1021/jp062701+.
S. Yang, M. Kertesz, V. Zólyomi, and J. Kürti, J. Phys. Chem. A 111, 2434 (2007) 1089-5639 10.1021/jp067866x.
P. A. Apgar and K. C. Yee, Acta Crystallogr., Sect. B: Struct. Sci. 34, 957 (1978) 0567-7408 10.1107/S0567740878004495.
A. Kobayashi, H. Kobayashi, Y. Tokura, T. Kanetake, and T. Koda, J. Chem. Phys. 87, 4962 (1987) 0021-9606 10.1063/1.452809.
D. Kobelt and E. F. Paulus, Acta Crystallogr., Sect. B: Struct. Sci. 30, 232 (1974) 0567-7408 10.1107/S0567740874002524.
E. Mostaani, B. Monserrat, N. D. Drummond, and C. J. Lambert, Phys. Chem. Chem. Phys. 18, 14810 (2016) 1463-9076 10.1039/C5CP07891A.
M. Barborini and L. Guidoni, J. Chem. Theory Comput. 11, 4109 (2015) 1549-9618 10.1021/acs.jctc.5b00427.
S. Refaely-Abramson, M. Jain, S. Sharifzadeh, J. B. Neaton, and L. Kronik, Phys. Rev. B 92, 081204 (R) (2015) 1098-0121 10.1103/PhysRevB.92.081204.
M. E. Casida, Time-dependent density functional response theory for molecules, in Recent Advances in Density Functional Methods (World Scientific, Singapore, 1995), pp. 155-192.
M. D. Johannes and I. I. Mazin, Phys. Rev. B 77, 165135 (2008) 1098-0121 10.1103/PhysRevB.77.165135.
P. Ghosez, X. Gonze, and R. W. Godby, Phys. Rev. B 56, 12811 (1997) 0163-1829 10.1103/PhysRevB.56.12811.
D. Varsano, A. Marini, and A. Rubio, Phys. Rev. Lett. 101, 133002 (2008) 0031-9007 10.1103/PhysRevLett.101.133002.
M. Kertesz, J. Koller, and A. AŽman, J. Chem. Phys. 68, 2779 (1978) 0021-9606 10.1063/1.436070;
M. Kertesz, J. Koller, and A. AŽman, J. Chem. Phys. 69, 2937 (1978) 0021-9606 10.1063/1.436858;
M. Kertész, J. C. V. Koller, and A. AŽman, Phys. Rev. B 19, 2034 (1979) 0163-1829 10.1103/PhysRevB.19.2034.
L. Stella, C. Attaccalite, S. Sorella, and A. Rubio, Phys. Rev. B 84, 245117 (2011) 1098-0121 10.1103/PhysRevB.84.245117.