Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
The effect of dataset confounding on predictions of deep neural networks for medical imaging
GARCIA SANTA CRUZ, Beatriz; HUSCH, Andreas; HERTEL, Frank
2022In Vol. 3 (2022): Proceedings of the Northern Lights Deep Learning Workshop 2022
Peer reviewed
 

Documents


Texte intégral
camara_ready_the_effect_of_dataset_confounding.pdf
Postprint Éditeur (469.5 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Confounding; Deep learning; medical imaging
Résumé :
[en] The use of Convolutional Neural Networks (CNN) in medical imaging has often outperformed previous solutions and even specialists, becoming a promising technology for Computer-aided-Diagnosis (CAD) systems. However, recent works suggested that CNN may have poor generalisation on new data, for instance, generated in different hospitals. Uncontrolled confounders have been proposed as a common reason. In this paper, we experimentally demonstrate the impact of confounding data in unknown scenarios. We assessed the effect of four confounding configurations: total, strong, light and balanced. We found the confounding effect is especially prominent in total confounder scenarios, while the effect on light and strong confounding scenarios may depend on the dataset robustness. Our findings indicate that the confounding effect is independent of the architecture employed. These findings might explain why models can report good metrics during the development stage but fail to translate to real-world settings. We highlight the need for thorough consideration of these commonly unattended aspects, to develop safer CNN-based CAD systems.
Disciplines :
Sciences informatiques
Sciences du vivant: Multidisciplinaire, généralités & autres
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
GARCIA SANTA CRUZ, Beatriz ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
HUSCH, Andreas  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Interventional Neuroscience
HERTEL, Frank ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
The effect of dataset confounding on predictions of deep neural networks for medical imaging
Date de publication/diffusion :
18 avril 2022
Nom de la manifestation :
4th Northern Lights Deep learning Conference 2022
Date de la manifestation :
from 10-1-2022 to 12-1-2022
Manifestation à portée :
International
Titre de l'ouvrage principal :
Vol. 3 (2022): Proceedings of the Northern Lights Deep Learning Workshop 2022
Pagination :
8
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 24 février 2022

Statistiques


Nombre de vues
405 (dont 14 Unilu)
Nombre de téléchargements
134 (dont 6 Unilu)

citations OpenAlex
 
2

Bibliographie


Publications similaires



Contacter ORBilu