HOLL, Elisabeth ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS)
BATTISTUTTA, Layla ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS)
VAN DER MEULEN, Marian ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS)
RISCHER, Katharina Miriam ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS)
External co-authors :
no
Language :
English
Title :
When less is more: Investigating factors influencing the distraction effect of virtual reality from pain
Hoffman HG Patterson DR Magula J Carrougher GJ Zeltzer K Dagadakis S et al. Water-friendly virtual reality pain control during wound care. J Clin Psychol. (2004) 60:189–95. 10.1002/jclp.1024414724926
Mallari B Spaeth EK Goh H Boyd BS. Virtual reality as an analgesic for acute and chronic pain in adults: a systematic review and meta-analysis. J Pain Res. (2019) 12:2053–85. 10.2147/JPR.S20049831308733
Malloy KM Milling LS. The effectiveness of virtual reality distraction for pain reduction: a systematic review. Clin Psychol Rev. (2010) 30:1011–8. 10.1016/j.cpr.2010.07.00120691523
Trost Z France C Anam M Shum C. Virtual reality approaches to pain: toward a state of the science. Pain. (2021) 162:325–31. 10.1097/j.pain.000000000000206032868750
Gupta A Scott K Dukewich M. Innovative technology using virtual reality in the treatment of pain: does it reduce pain via distraction, or is there more to it? Pain Med. (2018) 19:151–9. 10.1093/pm/pnx10929025113
Buhle J. Wager TD. Performance-dependent inhibition of pain by an executive working memory task. Pain. (2010) 149:19–26. 10.1016/j.pain.2009.10.02720129735
Paris TA Misra G Archer DB Coombes SA. Effects of a force production task and a working memory task on pain perception. J Pain. (2013) 14:1492–501. 10.1016/j.jpain.2013.07.01224055565
Demeter N Pud D Josman N. Cognitive components predict virtual reality-induced analgesia: repeated measures in healthy subjects. Front Robot AI. (2018) 4:70. 10.3389/frobt.2017.00070
Dumoulin S Bouchard S Loranger C Quintana P Gougeon V Lavoie KL. Are cognitive load and focus of attention differentially involved in pain management: an experimental study using a cold pressor test and virtual reality. J Pain Res. (2020) 13:2213. 10.2147/JPR.S23876632943914
Fairclough SH Stamp K Dobbins C Poole HM. Computer games as distraction from PAIN: Effects of hardware and difficulty on pain tolerance and subjective IMMERSION. Int J Hum-Comput Stud. (2020) 139:102427. 10.1016/j.ijhcs.2020.102427
Geva N Pruessner J Defrin R. Acute psychosocial stress reduces pain modulation capabilities in healthy men. Pain®. (2014) 155:2418–25. 10.1016/j.pain.2014.09.02325250721
Geva N Defrin R. Opposite effects of stress on pain modulation depend on the magnitude of individual stress response. J Pain. (2018) 19:360–71. 10.1016/j.jpain.2017.11.01129241836
Nahman-Averbuch H Nir RR Sprecher E Yarnitsky D. Psychological factors and conditioned pain modulation. Clin J Pain. (2016) 32:541–54. 10.1097/AJP.000000000000029630730473
Schreiber KL Campbell C Martel MO Greenbaum S Wasan AD Borsook D et al. Distraction analgesia in chronic pain patients: the impact of catastrophizing. Anesthesiology. (2014) 121:1292–301. 10.1097/ALN.000000000000046525264596
Verhoeven K Goubert L Jaaniste T Van Ryckeghem DM Crombez G. Pain catastrophizing influences the use and the effectiveness of distraction in schoolchildren. Eur J Pain. (2012) 16:256–67. 10.1016/j.ejpain.2011.06.01522323378
Bjekić J Živanović M Purić D Oosterman JM Filipović SR. Pain and executive functions: a unique relationship between stroop task and experimentally induced pain. Psychol Res. (2018) 82:580–9. 10.1007/s00426-016-0838-228124117
Oosterman JM Dijkerman HC Kessels RPC Scherder EJA. A unique association between cognitive inhibition and pain sensitivity in healthy participants. Eur J Pain. (2010) 14:1046–50. 10.1016/j.ejpain.2010.04.00420493746
Rischer KM González-Roldán AM Montoya P Gigl S Anton F Meulen M. Distraction from pain: the role of selective attention and pain catastrophizing. Eur J Pain. (2020) 13:ejp.1634. 10.1002/ejp.163432677265
Smith V Warty RR Sursas JA Payne O Nair A Krishnan S et al. The effectiveness of virtual reality in managing acute pain and anxiety for medical inpatients: systematic review. J Med Internet Res. (2020) 22:e17980. 10.2196/1798033136055
Chirico A Maiorano P Indovina P Milanese C Giordano GG Alivernini F et al. Virtual reality and music therapy as distraction interventions to alleviate anxiety and improve mood states in breast cancer patients during chemotherapy. J Cell Physiol. (2020) 235:5353–62. 10.1002/jcp.2942231957873
Colloca L Raghuraman N Wang Y Akintola T Brawn-Cinani B Colloca G et al. Virtual reality: physiological and behavioral mechanisms to increase individual pain tolerance limits. Pain. (2020) 161:2010–21. 10.1097/j.pain.000000000000190032345915
Terkelsen A Andersen OK Mølgaard H Hansen J Jensen T. Mental stress inhibits pain perception and heart rate variability but not a nociceptive withdrawal reflex. Acta Physiol Scand. (2004) 180:405–14. 10.1111/j.1365-201X.2004.01263.x15030382
Mukherjee S Yadav R Yung I Zajdel DP Oken BS. Sensitivity to mental effort and test–retest reliability of heart rate variability measures in healthy seniors. Clin Neurophysiol. (2011) 122:2059–66. 10.1016/j.clinph.2011.02.03221459665
Segerstrom SC Nes LS. Heart rate variability reflects self-regulatory strength, effort, and fatigue. Psychol Sci. (2007) 18:275–81. 10.1111/j.1467-9280.2007.01888.x17444926
Bracken CC Skalski P. Presence and video games: the impact of image quality and skill level. In: Proceedings of the Ninth Annual International Workshop on Presence. Cleveland State University Cleveland, OH (2006). p. 28–9.
Slater. Presence and the sixth sense. Presence Teleoperators Virtual Environ. (2002) 11:435–9. 10.1162/105474602760204327
Hartmann T Wirth W Schramm H Klimmt C Vorderer P Gysbers A et al. The spatial presence experience scale (SPES). J Media Psychol. (2015) 28:1–15. 10.1027/1864-1105/a000137
Kennedy RS Lane NE Berbaum KS Lilienthal MG. Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int J Aviat Psychol. (1993) 3:203–20. 10.1207/s15327108ijap0303_3
Leppink J Paas F Van der Vleuten CP Van Gog T Van Merriënboer JJ. Development of an instrument for measuring different types of cognitive load. Behav Res Methods. (2013) 45:1058–72. 10.3758/s13428-013-0334-123572251
McNeil DW Rainwater AJ. Development of the fear of pain questionnaire-III. J Behav Med. (1998) 21:389–410. 10.1023/A:10187828312179789168
Sullivan MJ Bishop SR Pivik J. The pain catastrophizing scale: development and validation. Psychol Assess. (1995) 7:524. 10.1037/1040-3590.7.4.52428616005
McCracken LM. “Attention” to pain in persons with chronic pain: a behavioral approach. Behav Ther. (1997) 28:271–84. 10.1016/S0005-7894(97)80047-0
Henry JD Crawford JR. The short-form version of the Depression Anxiety Stress Scales (DASS-21): construct validity and normative data in a large non-clinical sample. Br J Clin Psychol. (2005) 44:227–39. 10.1348/014466505X2965716004657
Mueller ST Piper BJ. The psychology experiment building language (PEBL) and PEBL test battery. J Neurosci Methods. (2014) 222:250–9. 10.1016/j.jneumeth.2013.10.02432436398
Kessels RP Van Zandvoort MJ Postma A Kappelle LJ De Haan EH. The Corsi block-tapping task: standardization and normative data. Appl Neuropsychol. (2000) 7:252–8. 10.1207/S15324826AN0704_811296689
Stins JF Polderman JCT Boomsma DI de Geus EJC. Conditional accuracy in response interference tasks: evidence from the eriksen flanker task and the spatial conflict task. Adv Cogn Psychol. (2007) 3:409–17. 10.2478/v10053-008-0005-420517524
Friedman NP Miyake A. The relations among inhibition and interference control functions: a latent-variable analysis. J Exp Psychol Gen. (2004) 133:101. 10.1037/0096-3445.133.1.10114979754
Nosek BA Banaji MR. The go/no-go association task. Soc Cogn. (2001) 19:625–66. 10.1521/soco.19.6.625.20886
Mostofsky SH Simmonds DJ. Response inhibition and response selection: two sides of the same coin. J Cogn Neurosci. (2008) 20:751–61. 10.1162/jocn.2008.2050018201122
Bezdjian S Baker LA Lozano DI Raine A. Assessing inattention and impulsivity in children during the Go/NoGo task. Br J Dev Psychol. (2009) 27:365–83. 10.1348/026151008X31491919812711
Damerau FJ. A technique for computer detection and correction of spelling errors. Commun ACM. (1964) 7:171–6. 10.1145/363958.363994
Wasner GL Brock JA. Determinants of thermal pain thresholds in normal subjects. Clin Neurophysiol. (2008) 119:2389–95. 10.1016/j.clinph.2008.07.22318778969
Sjak-Shie EE,. PhysioData Toolbox. (2019). Available online at: https://PhysioDataToolbox.leidenuniv.nl (accessed April 8, 2021).
Shaffer F Ginsberg J. An overview of heart rate variability metrics and norms. Front Public Health. (2017) 5:258. 10.3389/fpubh.2017.0025829034226
de Winter JC Gosling SD Potter J. Comparing the pearson and spearman correlation coefficients across distributions and sample sizes: a tutorial using simulations and empirical data. Psychol Methods. (2016) 21:273. 10.1037/met000007927213982
Faul F Erdfelder E Lang AG Buchner A. G* Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. (2007) 39:175–91. 10.3758/BF0319314617695343
Faul F Erdfelder E Buchner A Lang AG. Statistical power analyses using G* Power 3. 1: tests for correlation and regression analyses. Behav Res Methods. (2009) 41:1149–60. 10.3758/BRM.41.4.114919897823
Campbell CM Witmer K Simango M Carteret A Loggia ML Campbell JN et al. Catastrophizing delays the analgesic effect of distraction. Pain. (2010) 149:202–7. 10.1016/j.pain.2009.11.01220188470
Prins B Decuypere A Van Damme S. Effects of mindfulness and distraction on pain depend upon individual differences in pain catastrophizing: An experimental study: effects of mindfulness versus distraction on pain. Eur J Pain. (2014) 18:1307–15. 10.1002/j.1532-2149.2014.491.x24677437
Kurzban R Duckworth A Kable JW Myers J. An opportunity cost model of subjective effort and task performance. Behav Brain Sci. (2013) 36:661–79. 10.1017/S0140525X1200319624304775
Sharar SR Alamdari A Hoffer C Hoffman HG Jensen MP Patterson DR. Circumplex model of affect: a measure of pleasure and arousal during virtual reality distraction analgesia. Games Health J. (2016) 5:197–202. 10.1089/g4h.2015.004627171578
Triberti S Repetto C Riva G. Psychological factors influencing the effectiveness of virtual reality–based analgesia: a systematic review. Cyberpsychology Behav Soc Netw. (2014) 17:335–45. 10.1089/cyber.2014.005424892195
Pence LE Thorn BE Davis AM. Cognitive coping strategies in pain management. In: Ebert MH, Kerns RD, editors. Behavioral and Psychopharmacologic Pain Management. 1st ed. Cambridge: Cambridge University Press (2011). p. 219.
Wang X Shi Y Zhang B Chiang Y. The influence of forest resting environments on stress using virtual reality. Int J Environ Res Public Health. (2019) 16:3263. 10.3390/ijerph1618326331491931
Scates D Dickinson JI Sullivan K Cline H Balaraman R. Using nature-inspired virtual reality as a distraction to reduce stress and pain among cancer patients. Environ Behav. (2020) 52:895–918. 10.1177/0013916520916259
Meggiolaro E Berardi MA Andritsch E Nanni MG Sirgo A Samorì E et al. Cancer patients' emotional distress, coping styles and perception of doctor-patient interaction in European cancer settings. Palliat Support Care. (2016) 14:204. 10.1017/S147895151500076026155817
O'Keeffe N Ranjith G. Depression, demoralisation or adjustment disorder? Understanding emotional distress in the severely medically ill. Clin Med. (2007) 7:478. 10.7861/clinmedicine.7-5-47817990716
Allegri N Mennuni S Rulli E Vanacore N Corli O Floriani I et al. Systematic review and meta-analysis on neuropsychological effects of long-term use of opioids in patients with chronic noncancer pain. Pain Pract. (2019) 19:328–43. 10.1111/papr.1274130354006
Demeter N Josman N Eisenberg E Pud D. Who can benefit from virtual reality to reduce experimental pain? A crossover study in healthy subjects. Eur J Pain. (2015) 19:1467–75. 10.1002/ejp.67825716105
Karaman D Erol F Yilmaz D Dikmen Y. Investigation of the effect of the virtual reality application on experimental pain severity in healthy. Rev Assoc Médica Bras. (2019) 65:446–51. 10.1590/1806-9282.65.3.44630994846
Loreto-Quijada D Gutiérrez-Maldonado J Nieto R Gutiérrez-Martínez O Ferrer-García M Saldaña C et al. Differential effects of two virtual reality interventions: distraction versus pain control. Cyberpsychology Behav Soc Netw. (2014) 17:353–8. 10.1089/cyber.2014.005724892197
Marino J Gwynn MI Spanos NP. Cognitive mediators in the reduction of pain: the role of expectancy, strategy use, and self-presentation. J Abnorm Psychol. (1989) 98:256–62. 10.1037/0021-843X.98.3.2562768661
Rainville P Doucet JC Fortin MC Duncan GH. Rapid deterioration of pain sensory-discriminative information in short-term memory. Pain. (2004) 110:605–15. 10.1016/j.pain.2004.04.02415288401
Hart SG. NASA-task load index (NASA-TLX); 20 years later. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting. Los Angeles, CA; Sage publications Sage CA (2006). p. 904–8.