Article (Périodiques scientifiques)
Transfer Learning Strategies for Credit Card Fraud Detection.
LEBICHOT, Bertrand; Verheslt, Théo; Le Borgne, Yann-aël et al.
2021In IEEE Access
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Transfer_Learning_Strategies_for_Credit_Card_Fraud_Detection.pdf
Postprint Éditeur (1.55 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Fraud detection; transfer learning; domain adaptation
Résumé :
[en] Credit card fraud jeopardizes the trust of customers in e-commerce transactions. This led in recent years to major advances in the design of automatic Fraud Detection Systems (FDS) able to detect fraudulent transactions with short reaction time and high precision. Nevertheless, the heterogeneous nature of the fraud behavior makes it difficult to tailor existing systems to different contexts (e.g. new payment systems, different countries and/or population segments). Given the high cost (research, prototype development, and implementation in production) of designing data-driven FDSs, it is crucial for transactional companies to define procedures able to adapt existing pipelines to new challenges. From an AI/machine learning perspective, this is known as the problem of transfer learning. This paper discusses the design and implementation of transfer learning approaches for e-commerce credit card fraud detection and their assessment in a real setting. The case study, based on a six-month dataset (more than 200 million e-commerce transactions) provided by the industrial partner, relates to the transfer of detection models developed for a European country to another country. In particular, we present and discuss 15 transfer learning techniques (ranging from naive baselines to state-of-the-art and new approaches), making a critical and quantitative comparison in terms of precision for different transfer scenarios. Our contributions are twofold: (i) we show that the accuracy of many transfer methods is strongly dependent on the number of labeled samples in the target domain and (ii) we propose an ensemble solution to this problem based on self-supervised and semi-supervised domain adaptation classifiers. The thorough experimental assessment shows that this solution is both highly accurate and hardly sensitive to the number of labeled samples.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
LEBICHOT, Bertrand ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
Verheslt, Théo;  Université Libre de Bruxelles - ULB
Le Borgne, Yann-aël;  Université Libre de Bruxelles - ULB
He-Guelton, Liyun;  Worldline
Oblé, Frédéric;  Worldline
Bontempi, Gianluca;  Université Libre de Bruxelles - ULB
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Transfer Learning Strategies for Credit Card Fraud Detection.
Date de publication/diffusion :
2021
Titre du périodique :
IEEE Access
ISSN :
2169-3536
Maison d'édition :
Institute of Electrical and Electronics Engineers, Piscataway, Etats-Unis - New Jersey
Peer reviewed :
Peer reviewed vérifié par ORBi
Organisme subsidiant :
Innoviris - Institut Bruxellois pour la Recherche et l'Innovation
Disponible sur ORBilu :
depuis le 10 février 2022

Statistiques


Nombre de vues
119 (dont 3 Unilu)
Nombre de téléchargements
186 (dont 2 Unilu)

citations Scopus®
 
27
citations Scopus®
sans auto-citations
27
citations OpenAlex
 
27
citations WoS
 
10

Bibliographie


Publications similaires



Contacter ORBilu