Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Weakly-Supervised Free Space Estimation through Stochastic Co-Teaching
ROBINET, François; PARERA, Claudia; HUNDT, Christian et al.
2022In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) Workshops, 2022
Peer reviewed
 

Documents


Texte intégral
Robinet_Weakly-Supervised_Free_Space_Estimation_Through_Stochastic_Co-Teaching_WACVW_2022_paper.pdf
Postprint Éditeur (754 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
weak supervision; Free space; co-teaching
Résumé :
[en] Free space estimation is an important problem for autonomous robot navigation. Traditional camera-based approaches train a segmentation model using an annotated dataset. The training data needs to capture the wide variety of environments and weather conditions encountered at runtime, making the annotation cost prohibitively high. In this work, we propose a novel approach for obtaining free space estimates from images taken with a single road-facing camera. We rely on a technique that generates weak free space labels without any supervision, which are then used as ground truth to train a segmentation model for free space estimation. Our work differs from prior attempts by explicitly taking label noise into account through the use of Co-Teaching. Since Co-Teaching has traditionally been investigated in classification tasks, we adapt it for segmentation and examine how its parameters affect performances in our experiments. In addition, we propose Stochastic Co-Teaching, which is a novel method to select clean samples that leads to enhanced results. We achieve an IoU of 82.6%, a Precision of 90.9%, and a Recall of 90.3%. Our best model reaches 87% of the IoU, 93% of the Precision, and 93% of the Recall of the equivalent fully-supervised baseline while using no human annotations. To the best of our knowledge, this work is the first to use Co-Teaching to train a free space segmentation model under explicit label noise. Our implementation and trained models are freely available online.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Services and Data management research group (SEDAN)
Disciplines :
Sciences informatiques
Auteur, co-auteur :
ROBINET, François ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SEDAN
PARERA, Claudia ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SEDAN
HUNDT, Christian ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
FRANK, Raphaël ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SEDAN
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Weakly-Supervised Free Space Estimation through Stochastic Co-Teaching
Date de publication/diffusion :
04 janvier 2022
Nom de la manifestation :
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) Workshops 2022
Lieu de la manifestation :
Etats-Unis - Hawaï
Date de la manifestation :
4-01-2022 to 8-01-2022
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) Workshops, 2022
Pagination :
618-627
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Projet FnR :
FNR13301060 - Machine Learning For Risk Assessment In Semi-autonomous Vehicles, 2018 (01/10/2018-31/08/2022) - François Robinet
Disponible sur ORBilu :
depuis le 04 février 2022

Statistiques


Nombre de vues
312 (dont 55 Unilu)
Nombre de téléchargements
120 (dont 16 Unilu)

citations Scopus®
 
5
citations Scopus®
sans auto-citations
4

Bibliographie


Publications similaires



Contacter ORBilu