Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Efficient Online Testing for DNN-Enabled Systems using Surrogate-Assisted and Many-Objective Optimization
UL HAQ, Fitash; SHIN, Donghwan; BRIAND, Lionel
2022In Proceedings of the 44th International Conference on Software Engineering (ICSE ’22)
Peer reviewed
 

Documents


Texte intégral
SAMOTA-authorversion.pdf
Postprint Auteur (841.15 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
DNN testing; self-driving cars; online testing; many-objective search; surrogate-assisted optimization
Résumé :
[en] With the recent advances of Deep Neural Networks (DNNs) in real-world applications, such as Automated Driving Systems (ADS) for self-driving cars, ensuring the reliability and safety of such DNN- enabled Systems emerges as a fundamental topic in software testing. One of the essential testing phases of such DNN-enabled systems is online testing, where the system under test is embedded into a specific and often simulated application environment (e.g., a driving environment) and tested in a closed-loop mode in interaction with the environment. However, despite the importance of online testing for detecting safety violations, automatically generating new and diverse test data that lead to safety violations present the following challenges: (1) there can be many safety requirements to be considered at the same time, (2) running a high-fidelity simulator is often very computationally-intensive, and (3) the space of all possible test data that may trigger safety violations is too large to be exhaustively explored. In this paper, we address the challenges by proposing a novel approach, called SAMOTA (Surrogate-Assisted Many-Objective Testing Approach), extending existing many-objective search algorithms for test suite generation to efficiently utilize surrogate models that mimic the simulator, but are much less expensive to run. Empirical evaluation results on Pylot, an advanced ADS composed of multiple DNNs, using CARLA, a high-fidelity driving simulator, show that SAMOTA is significantly more effective and efficient at detecting unknown safety requirement violations than state-of-the-art many-objective test suite generation algorithms and random search. In other words, SAMOTA appears to be a key enabler technology for online testing in practice.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Software Verification and Validation Lab (SVV Lab)
Disciplines :
Sciences informatiques
Auteur, co-auteur :
UL HAQ, Fitash ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
SHIN, Donghwan ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
BRIAND, Lionel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Efficient Online Testing for DNN-Enabled Systems using Surrogate-Assisted and Many-Objective Optimization
Date de publication/diffusion :
mai 2022
Nom de la manifestation :
44th International Conference on Software Engineering (ICSE ’22)
Date de la manifestation :
from 21-05-2022 to 29-05-2022
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of the 44th International Conference on Software Engineering (ICSE ’22)
Maison d'édition :
ACM, New York, NY, Etats-Unis
Pagination :
811-822
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Projet européen :
H2020 - 694277 - TUNE - Testing the Untestable: Model Testing of Complex Software-Intensive Systems
Projet FnR :
FNR14711346 - Functional Safety For Autonomous Systems, 2020 (01/08/2020-31/07/2023) - Fabrizio Pastore
Organisme subsidiant :
FNR - Fonds National de la Recherche
CE - Commission Européenne
Disponible sur ORBilu :
depuis le 28 janvier 2022

Statistiques


Nombre de vues
2002 (dont 158 Unilu)
Nombre de téléchargements
1034 (dont 42 Unilu)

citations Scopus®
 
62
citations Scopus®
sans auto-citations
55
OpenCitations
 
2
citations OpenAlex
 
64
citations WoS
 
58

Bibliographie


Publications similaires



Contacter ORBilu