[en] We study the phenomenon of quantum friction in a system consisting of a polarizable atom moving at a constant speed parallel to a metallic plate. The metal is described using a charged hydrodynamic model for the electrons. This model featuring long-range interactions is appropriate for a clean metal in a temperature range where scattering due to Coulomb interactions dominates over the scattering of electron by impurities. We find that a quantum friction force between the atom and the metal surface exists even in the absence of intrinsic damping in the metal, but that it only starts once the velocity of the atom exceeds the effective speed of sound in the metal. We argue that this condition can be fulfilled most easily in metals with nearly empty or nearly filled bands. We make quantitative predictions for the friction force to the second and fourth order in the atomic polarizability, and show that the threshold behavior persists to all orders of the perturbation theory.
Disciplines :
Physique
Auteur, co-auteur :
WU, Kunmin ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
SCHMIDT, Thomas ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
FARIAS, Maria Belen ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Quantum friction between metals in the hydrodynamic regime
Date de publication/diffusion :
décembre 2022
Titre du périodique :
Physical Review. A
ISSN :
2469-9926
eISSN :
2469-9934
Maison d'édition :
American Physical Society, College Park, Etats-Unis - Maryland
J. Pendry, Quantum friction-fact or fiction?, New J. Phys. 12, 033028 (2010) 1367-2630 10.1088/1367-2630/12/3/033028.
T. G. Philbin and U. Leonhardt, No quantum friction between uniformly moving plates, New J. Phys. 11, 033035 (2009) 1367-2630 10.1088/1367-2630/11/3/033035.
H. B. G. Casimir, On the attraction between two perfectly conducting plates, Proc. Kon. Ned. Akad. Wet. 51, 793 (1948).
K. A. Milton, The Casimir effect: Recent controversies and progress, J. Phys. A: Math. Gen. 37, R209 (2004) 0305-4470 10.1088/0305-4470/37/38/R01.
K. A. Milton, J. S. Høye, and I. Brevik, The reality of Casimir friction, Symmetry 8, 29 (2016) 2073-8994 10.3390/sym8050029.
G. Barton, On van der waals friction. ii: Between atom and half-space, New J. Phys. 12, 113045 (2010) 1367-2630 10.1088/1367-2630/12/11/113045.
J. Pendry, Shearing the vacuum-quantum friction, J. Phys.: Condens. Matter 9, 10301 (1997) 0953-8984 10.1088/0953-8984/9/47/001.
A. I. Volokitin and B. N. J. Persson, Near-field radiative heat transfer and noncontact friction, Rev. Mod. Phys. 79, 1291 (2007) 0034-6861 10.1103/RevModPhys.79.1291.
F. Intravaia, V. E. Mkrtchian, S. Y. Buhmann, S. Scheel, D. A. Dalvit, and C. Henkel, Friction forces on atoms after acceleration, J. Phys.: Condens. Matter 27, 214020 (2015) 0953-8984 10.1088/0953-8984/27/21/214020.
M. B. Farías, C. D. Fosco, F. C. Lombardo, and F. D. Mazzitelli, Motion induced radiation and quantum friction for a moving atom, Phys. Rev. D 100, 036013 (2019) 2470-0010 10.1103/PhysRevD.100.036013.
A. I. Volokitin and B. N. J. Persson, Resonant Photon Tunneling Enhancement of the Van Der Waals Friction, Phys. Rev. Lett. 91, 106101 (2003) 0031-9007 10.1103/PhysRevLett.91.106101.
J. Klatt, M. B. Farías, D. A. R. Dalvit, and S. Y. Buhmann, Quantum friction in arbitrarily directed motion, Phys. Rev. A 95, 052510 (2017) 2469-9926 10.1103/PhysRevA.95.052510.
V. Dodonov, Current status of the dynamical casimir effect, Phys. Scr. 82, 038105 (2010) 0031-8949 10.1088/0031-8949/82/03/038105.
A. I. Volokitin and B. N. J. Persson, Quantum Friction, Phys. Rev. Lett. 106, 094502 (2011) 0031-9007 10.1103/PhysRevLett.106.094502.
B. Shapiro, Fluctuation-induced forces in the presence of mobile carrier drift, Phys. Rev. B 96, 075407 (2017) 2469-9950 10.1103/PhysRevB.96.075407.
F. J. García de Abajo, Optical excitations in electron microscopy, Rev. Mod. Phys. 82, 209 (2010) 0034-6861 10.1103/RevModPhys.82.209.
M. Belén Farías, C. D. Fosco, F. C. Lombardo, F. D. Mazzitelli, and A. E. Rubio López, Functional approach to quantum friction: Effective action and dissipative force, Phys. Rev. D 91, 105020 (2015) 1550-7998 10.1103/PhysRevD.91.105020.
J. Klatt, R. Bennett, and S. Y. Buhmann, Spectroscopic signatures of quantum friction, Phys. Rev. A 94, 063803 (2016) 2469-9926 10.1103/PhysRevA.94.063803.
F. Intravaia, R. O. Behunin, and D. A. R. Dalvit, Quantum friction and fluctuation theorems, Phys. Rev. A 89, 050101 (R) (2014) 1050-2947 10.1103/PhysRevA.89.050101.
D. Reiche, F. Intravaia, J.-T. Hsiang, K. Busch, and B.-L. Hu, Nonequilibrium thermodynamics of quantum friction, Phys. Rev. A 102, 050203 (R) (2020) 2469-9926 10.1103/PhysRevA.102.050203.
M. B. Farías and F. C. Lombardo, Dissipation and decoherence effects on a moving particle in front of a dielectric plate, Phys. Rev. D 93, 065035 (2016) 2470-0010 10.1103/PhysRevD.93.065035.
L. Viotti, M. Belén Farías, P. I. Villar, and F. C. Lombardo, Thermal corrections to quantum friction and decoherence: A closed-time-path approach to atom-surface interaction, Phys. Rev. D 99, 105005 (2019) 2470-0010 10.1103/PhysRevD.99.105005.
M. B. Farías, F. C. Lombardo, A. Soba, P. I. Villar, and R. S. Decca, Towards detecting traces of non-contact quantum friction in the corrections of the accumulated geometric phase, npj Quantum Inf. 6, 1 (2020) 2056-6387 10.1038/s41534-019-0235-y.
M. B. Farias, C. D. Fosco, F. C. Lombardo, and F. D. Mazzitelli, Quantum friction between graphene sheets, Phys. Rev. D 95, 065012 (2017) 2470-0010 10.1103/PhysRevD.95.065012.
M. I. Shaukat and M. G. Silveirinha, Drag optical force due to a drift-current bias of graphene, in Metamaterials XII, Vol. 11344 (International Society for Optics and Photonics, Bellingham, 2020), p. 1134417.
M. B. Farias, W. J. M. Kort-Kamp, and D. A. R. Dalvit, Quantum friction in two-dimensional topological materials, Phys. Rev. B 97, 161407 (R) (2018) 2469-9950 10.1103/PhysRevB.97.161407.
J. H. Wilson, A. A. Allocca, and V. Galitski, Repulsive Casimir force between weyl semimetals, Phys. Rev. B 91, 235115 (2015) 1098-0121 10.1103/PhysRevB.91.235115.
M. B. Farias, A. A. Zyuzin, and T. L. Schmidt, Casimir force between Weyl semimetals in a chiral medium, Phys. Rev. B 101, 235446 (2020) 2469-9950 10.1103/PhysRevB.101.235446.
G. Barton, Some surface effects in the hydrodynamic model of metals, Rep. Prog. Phys. 42, 963 (1979) 0034-4885 10.1088/0034-4885/42/6/001.
M. Polini and A. K. Geim, Viscous electron fluids, Phys. Today 73 (6), 28 (2020) 0031-9228 10.1063/PT.3.4497.
D. Reiche, D. A. R. Dalvit, K. Busch, and F. Intravaia, Spatial dispersion in atom-surface quantum friction, Phys. Rev. B 95, 155448 (2017) 2469-9950 10.1103/PhysRevB.95.155448.
J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1999).
M. B. Farías, F. C. Lombardo, A. Soba, P. I. Villar, and R. S. Decca, Towards detecting traces of non-contact quantum friction in the corrections of the accumulated geometric phase, npj Quantum Inf. 6, 25 (2020) 10.1038/s41534-020-0252-x.
H. B. G. Casimir and D. Polder, The influence of retardation on the london-van der waals forces, Phys. Rev. 73, 360 (1948) 0031-899X 10.1103/PhysRev.73.360.