Article (Périodiques scientifiques)
Federated Learning for Physical Layer Design
Elbir, Ahmet M.; Papazafeiropoulos, Anastasios; CHATZINOTAS, Symeon
2021In IEEE Communications Magazine
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Federated Learning for Physical Layer Design.pdf
Postprint Éditeur (718.6 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] Model-free techniques, such as machine learning (ML), have recently attracted much interest towards the physical layer design, e.g., symbol detection, channel estimation, and beamforming. Most of these ML techniques employ centralized learning (CL) schemes and assume the availability of datasets at a parameter server (PS), demanding the transmission of data from edge devices, such as mobile phones, to the PS. Exploiting the data generated at the edge, federated learning (FL) has been proposed recently as a distributed learning scheme, in which each device computes the model parameters and sends them to the PS for model aggregation while the datasets are kept intact at the edge. Thus, FL is more communication-efficient and privacy-preserving than CL and applicable to the wireless communication scenarios, wherein the data are generated at the edge devices. This article presents the recent advances in FL-based training for physical layer design problems. Compared to CL, the effectiveness of FL is presented in terms of communication overhead with a slight performance loss in the learning accuracy. The design challenges, such as model, data, and hardware complexity, are also discussed in detail along with possible solutions.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Elbir, Ahmet M.
Papazafeiropoulos, Anastasios
CHATZINOTAS, Symeon  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Federated Learning for Physical Layer Design
Date de publication/diffusion :
2021
Titre du périodique :
IEEE Communications Magazine
ISSN :
0163-6804
eISSN :
1558-1896
Maison d'édition :
Communications Society of Institute of Electrical and Electronics Engineers, New-York, Etats-Unis - New York
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Security, Reliability and Trust
Disponible sur ORBilu :
depuis le 12 janvier 2022

Statistiques


Nombre de vues
121 (dont 2 Unilu)
Nombre de téléchargements
120 (dont 2 Unilu)

citations Scopus®
 
26
citations Scopus®
sans auto-citations
19
citations OpenAlex
 
0
citations WoS
 
22

Bibliographie


Publications similaires



Contacter ORBilu