Eprint diffusé à l'origine sur un autre site (E-prints, Working papers et Carnets de recherche)
Factoring Primes to Factor Moduli: Backdooring and Distributed Generation of Semiprimes
VITTO, Giuseppe
2021
 

Documents


Texte intégral
factoring_primes.pdf
Preprint Auteur (475.8 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
elliptic curves; complex-multiplication; backdoor; semiprime; certificate; MPC; RSA; ECM
Disciplines :
Sciences informatiques
Auteur, co-auteur :
VITTO, Giuseppe ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Cryptolux
Langue du document :
Anglais
Titre :
Factoring Primes to Factor Moduli: Backdooring and Distributed Generation of Semiprimes
Date de publication/diffusion :
2021
Focus Area :
Computational Sciences
Projet FnR :
FNR11684537 - Security, Scalability, And Privacy In Blockchain Applications And Smart Contracts, 2017 (01/08/2018-31/07/2021) - Alex Biryukov
Organisme subsidiant :
FNR - Fonds National de la Recherche
Commentaire :
We describe a technique to backdoor a prime factor of a composite odd integer N, so that an attacker knowing a possibly secret factor base B, can efficiently retrieve it from N. Such method builds upon Complex Multiplication theory for elliptic curves, by generating primes p associated to B-smooth order elliptic curves over Fp. When such primes p divide an integer N, the latter can be efficiently factored using a generalization of Lenstra's Factorization Method over rings bigger than ZN, and with no knowledge other than N and B. We then formalize semiprimality certificates that, based on a result by Goldwasser and Kilian, allow to prove semiprimality of an integer with no need to reveal any of its factors. We show how our prime generation procedure can be used to efficiently produce semiprimality certificates, ultimately allowing us to sketch a multi-party distributed protocol to generate semiprimes with unknown factorisation, particularly relevant in the setting of distributed RSA modulus generation. We provide and discuss implementations of all proposed protocols and we address security of semiprimality certificates by showing that semiprimes generated within our methods result at least as secure as random semiprimes of same size.
Disponible sur ORBilu :
depuis le 11 janvier 2022

Statistiques


Nombre de vues
213 (dont 6 Unilu)
Nombre de téléchargements
177 (dont 2 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu