Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES implementation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 227–240. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-4 16
Biryukov, A., Udovenko, A.: Attacks and countermeasures for white-box designs. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 373– 402. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3 13
Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical query model. In: 32nd ACM STOC, pp. 435–440. ACM Press (2000)
Bogdanov, A., et al.: CHES 2019 Capture The Flag Challenge. The WhibOx Contest, 2nd edn. (2019). https://whibox-contest.github.io/2019/
Bogdanov, A., Rivain, M., Vejre, P.S., Wang, J.: Higher-order DCA against standard side-channel countermeasures. In: Polian, I., Stöttinger, M. (eds.) COSADE 2019. LNCS, vol. 11421, pp. 118–141. Springer, Cham (2019). https://doi.org/10. 1007/978-3-030-16350-1 8
Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential computation analysis: hiding your white-box designs is not enough. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 215–236. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53140-2 11
Breunesse, C.B., Kizhvatov, I., Muijrers, R., Spruyt, A.: Towards fully automated analysis of whiteboxes: perfect dimensionality reduction for perfect leakage. Cryptology ePrint Archive, Report 2018/095 (2018)
Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: A white-box DES implementation for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 1–15. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-44993-5 1
Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: White-box cryptography and an AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 250–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36492-7 17
Clavier, C., Coron, J.-S., Dabbous, N.: Differential power analysis in the presence of hardware countermeasures. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 252–263. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44499-8 20
Coron, J.-S., Greuet, A., Zeitoun, R.: Side-channel masking with pseudo-random generator. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 342–375. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3 12
Esser, A., Kübler, R., May, A.: LPN decoded. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 486–514. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0 17
Goubin, L., Paillier, P., Rivain, M., Wang, J.: How to reveal the secrets of an obscure white-box implementation. J. Cryptogr. Eng. 10(1), 49–66 (2019). https://doi.org/10.1007/s13389-019-00207-5
Herbst, C., Oswald, E., Mangard, S.: An AES smart card implementation resistant to power analysis attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 239–252. Springer, Heidelberg (2006). https://doi.org/10. 1007/11767480 16
Ishai, Y., et al.: Robust pseudorandom generators. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7965, pp. 576–588. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39206-1 49
Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27
Prouff, E., et al.: CHES 2017 Capture The Flag Challenge. The WhibOx Contest (2017). https://whibox-contest.github.io/2017/
Rivain, M., Prouff, E., Doget, J.: Higher-order masking and shuffling for software implementations of block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 171–188. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04138-9 13
Rivain, M., Wang, J.: Analysis and improvement of differential computation attacks against internally-encoded white-box implementations. IACR TCHES 2019(2), 225–255 (2019)