[en] intersectionality ; science of science ; bibliometrics
[en] The US scientific workforce is primarily composed of White men. Studies have demonstrated the systemic barriers preventing women and other minoritized populations from gaining entry to science; few, however, have taken an intersectional perspective and examined the consequences of these inequalities on scientific knowledge. We provide a large-scale bibliometric analysis of the relationship between intersectional identities, topics, and scientific impact. We find homophily between identities and topic, suggesting a relationship between diversity in the scientific workforce and expansion of the knowledge base. However, topic selection comes at a cost to minoritized individuals for whom we observe both between- and within-topic citation disadvantages. To enhance the robustness of science, research organizations should provide adequate resources to historically underfunded research areas while simultaneously providing access for minoritized individuals into high-prestige networks and topics.
Fonds National de la Recherche - FnR
Researchers ; Professionals ; Students ; General public
Significance
The US scientific workforce is not representative of the population. Barriers to entry and participation have been well-studied; however, few have examined the effect of these disparities on the advancement of science. Furthermore, most studies have looked at either race or gender, failing to account for the intersection of these variables. Our analysis utilizes millions of scientific papers to study the relationship between scientists and the science they produce. We find a strong relationship between the characteristics of scientists and their research topics, suggesting that diversity changes the scientific portfolio with consequences for career advancement for minoritized individuals. Science policies should consider this relationship to increase equitable participation in the scientific workforce and thereby improve the robustness of science.
FnR ; FNR12252781 > Andreas Zilian > DRIVEN > Data-driven Computational Modelling And Applications > 01/09/2018 > 28/02/2025 > 2017