Article (Périodiques scientifiques)
A Deep Dive inside DREBIN: An Explorative Analysis beyond Android Malware Detection Scores
DAOUDI, Nadia; ALLIX, Kevin; BISSYANDE, Tegawendé François D Assise et al.
2022In ACM Transactions on Privacy and Security, 25 (2)
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
TOPS_Deep_Dive_DREBIN_final.pdf
Preprint Auteur (1.43 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Android Malware Detection; Machine Learning; DREBIN; SVM
Résumé :
[en] Machine learning (ML) advances have been extensively explored for implementing large-scale malware detection. When reported in the literature, performance evaluation of ML-based detectors generally focuses on highlighting the ratio of samples that are correctly or incorrectly classified, overlooking essential questions on why/how the learned models can be demonstrated as reliable. In the Android ecosystem, several recent studies have highlighted how evaluation setups can carry biases related to datasets or evaluation methodologies. Nevertheless, there is little work attempting to dissect the produced model to provide some understanding of its intrinsic characteristics. In this work, we fill this gap by performing a comprehensive analysis of a state-of-the-art Android Malware detector, namely DREBIN, which constitutes today a key reference in the literature. Our study mainly targets an in-depth understanding of the classifier characteristics in terms of (1) which features actually matter among the hundreds of thousands that DREBIN extracts, (2) whether the high scores of the classifier are dependent on the dataset age, (3) whether DREBIN's explanations are consistent within malware families, etc. Overall, our tentative analysis provides insights into the discriminatory power of the feature set used by DREBIN to detect malware. We expect our findings to bring about a systematisation of knowledge for the community.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Trustworthy Software Engineering (TruX)
Disciplines :
Sciences informatiques
Auteur, co-auteur :
DAOUDI, Nadia ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
ALLIX, Kevin ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
BISSYANDE, Tegawendé François D Assise  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
KLEIN, Jacques  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
A Deep Dive inside DREBIN: An Explorative Analysis beyond Android Malware Detection Scores
Date de publication/diffusion :
mai 2022
Titre du périodique :
ACM Transactions on Privacy and Security
ISSN :
2471-2566
eISSN :
2471-2574
Maison d'édition :
Association for Computing Machinery (ACM)
Volume/Tome :
25
Fascicule/Saison :
2
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Security, Reliability and Trust
Projet FnR :
FNR11693861 - Characterization Of Malicious Code In Mobile Apps: Towards Accurate And Explainable Malware Detection, 2017 (01/06/2018-31/12/2021) - Jacques Klein
Organisme subsidiant :
FNR - Fonds National de la Recherche
European Union’s Horizon 2020 research and innovation program
University of Luxembourg - UL
Luxembourg Ministry of Foreign and European Affairs
Disponible sur ORBilu :
depuis le 04 janvier 2022

Statistiques


Nombre de vues
566 (dont 46 Unilu)
Nombre de téléchargements
393 (dont 8 Unilu)

citations Scopus®
 
25
citations Scopus®
sans auto-citations
25
OpenCitations
 
1
citations OpenAlex
 
30
citations WoS
 
19

Bibliographie


Publications similaires



Contacter ORBilu