
1

A Deep Dive inside DREBIN
An Explorative Analysis beyond Android Malware Detection Scores

NADIA DAOUDI, KEVIN ALLIX, TEGAWENDÉ FRANÇOIS BISSYANDÉ, and JACQUES
KLEIN, SnT, University of Luxembourg, Luxembourg

Machine learning (ML) advances have been extensively explored for implementing large-scale malware
detection. When reported in the literature, performance evaluation of ML-based detectors generally focuses on
highlighting the ratio of samples that are correctly or incorrectly classified, overlooking essential questions on
why/how the learned models can be demonstrated as reliable. In the Android ecosystem, several recent studies
have highlighted how evaluation setups can carry biases related to datasets or evaluation methodologies.
Nevertheless, there is little work attempting to dissect the produced model to provide some understanding
of its intrinsic characteristics. In this work, we fill this gap by performing a comprehensive analysis of a
state-of-the-art Android Malware detector, namely DREBIN, which constitutes today a key reference in the
literature. Our study mainly targets an in-depth understanding of the classifier characteristics in terms of (1)
which features actually matter among the hundreds of thousands that DREBIN extracts, (2) whether the high
scores of the classifier are dependent on the dataset age, (3) whether DREBIN’s explanations are consistent
within malware families, etc. Overall, our tentative analysis provides insights into the discriminatory power
of the feature set used by DREBIN to detect malware. We expect our findings to bring about a systematisation
of knowledge for the community.

CCS Concepts: • Security and privacy→Malware and its mitigation; • Computing methodologies→
Machine learning.

Additional Key Words and Phrases: Android Malware Detection, Machine Learning, DREBIN, SVM

ACM Reference Format:
Nadia Daoudi, Kevin Allix, Tegawendé François Bissyandé, and Jacques Klein. 2021. A Deep Dive inside
DREBIN: An Explorative Analysis beyond Android Malware Detection Scores. ACM Trans. Priv. Sec. 1, 1,
Article 1 (January 2021), 28 pages. https://doi.org/10.1145/3503463

1 INTRODUCTION
Machine learning has been widely proposed as a promising technique to address the proliferation of
Android malware through rapid, systematic and large-scale identification of malicious samples and
their variants. Several approaches [7, 8, 16, 28, 30, 33, 52] have then been presented in the literature
where authors explore static, dynamic or hybrid analysis methods to extract features, as well as
a variety of classification algorithms. While the malicious characteristic of a sample is derived
from the app behaviour, many approaches rely only on static analysis to produce features that
are then assumed to be a proxy representation of the app’s entire code (and hence its behaviour).
Such features unfortunately capture only a small predefined portion of information about the
app behaviour: features select only a finite set of code attributes, may leave out native code, etc.

Authors’ address: Nadia Daoudi, nadia.daoudi@uni.lu; Kevin Allix, kevin.allix@uni.lu; Tegawendé François Bissyandé,
tegawende.bissyande@uni.lu; Jacques Klein, jacques.klein@uni.lu, SnT, University of Luxembourg, 29, Avenue J.F Kennedy,
Luxembourg, Luxembourg, L-1359.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2021 Copyright held by the owner/author(s).
2471-2566/2021/1-ART1
https://doi.org/10.1145/3503463

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3503463
https://doi.org/10.1145/3503463

1:2 Nadia Daoudi, Kevin Allix, Tegawendé François Bissyandé, and Jacques Klein

Therefore, extracted features for machine learning based malware detection offer an imprecise
representation of an incomplete view of the app, that is further used as a proxy of application
behaviour. Consequently, there is an assumption that this proxy representation still contains enough
of the relevant information for discriminating malware. Feature engineering is thus the essential
step in malware detection that implements the intelligence of the malware detection approach,
beyond the off-the-shelf classification algorithms that are employed.
In the literature of malware detection, state-of-the-art approaches mainly differ by the feature

sets that are proposed. For example, DREBIN [7] is a key reference in the literature that builds
on a standard SVM algorithm but was novel in proposing a large and domain-specific feature set
that was manually engineered for the problem of Android malware detection. Interestingly, the
contributions that stand out in the vast majority of ML-based malware detection approaches are
associated to the feature set. These key contributions however are rarely evaluated through in-depth
ablation studies, where the feature set value is assessed thoroughly. Instead, the literature provides
assessment results by reporting detection performance measurements of the overall approach. The
state of the practice thus considers that good performance indicators offer sufficient validation on
the value of the feature set.
Evaluation of ML-based malware detection approaches have been scrutinised in recent studies.

Allix et al. [3] have demonstrated that the performance of a malware detector may drop drastically
when it is evaluated in the wild. Spatial and temporal biases have also been pointed out in two
independent research works [4, 35]. While these works attempt initial analyses of whethermodels
can fail to generalise, they do not provide in-depth investigations into how or why. We propose
to fill this gap in our work by conducting a tentative analysis of the feature set that is fed to the
learners.
Analysing a classifier is an open problem [27]. Our work engages in building a roadmap in

this direction for machine learning based malware detection. We propose a dissection study that
overviews the performance of a classifier from different points of views. Our work builds on a
reproduction study [11] that has considered Android malware detectors from 16 major venues on
Software Engineering, Security, and Machine Learning. Specifically, we focus on the state of the art
malware detector DREBIN, which is a the most cited approach that has been successfully replicated.
Typically, our investigation attempts to go beyond the quantitative measurements of Precision and
Recall detection metrics, to highlight other qualitative dimensions of the approach. In particular,
we seek answers to the following questions:

• What are the key app features that guarantee to DREBIN its high-performing detection
scores?

• Are all the features needed to achieve state-of-the-art detection performance?
• Does DREBIN learn the concept of malware family?
To support that the classification decisions are dependable, beyond the high performance scores,

DREBIN outputs some explanationswhich show that themodel has reasonably captured information
that is relevant to the accuracy of the decision. We propose to dissect these explanations further
through various analyses:

• To what extent are explanations given by DREBIN indicative of the classification decision?
• How consistent are the DREBIN explanations across samples of the same malware family?
Our study explores DREBIN along with its initial dataset but also considered three other datasets

that were carefully collected to assess the generalisability of the findings. Our insights with this
study will serve the community for better understanding the strengths and limitation of the DREBIN
contribution, and thus offer a systematisation of knowledge around DREBIN. We expect this study

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Deep Dive inside DREBIN 1:3

to better drive the exploitation of DREBIN as a key contribution in the literature towards opening
novel research directions and producing reliable and effective models for malware detection.

Among other findings, the study yields that:
❶ The feature set of DREBIN is sufficiently generic to capture enough concepts that are relevant

to a diverse set of malware samples across time.
❷ The feature set of DREBIN contains a huge number of id-features (e.g., features such as com-

ponent names). The relevance and importance of each feature however remains challenging
to quantify w.r.t. the overall performance of DREBIN.

❸ Most features in DREBIN are at best redundant and at worst useless. Indeed, a subset of
DREBIN features, smaller than the whole set by three orders of magnitude, is enough to
provide similar performance with the whole feature set.

❹ DREBIN includes some features which, singlely, can offer a surprisingly high detection rates
on some datasets.

❺ DREBIN explanations do not reflect how much the features contribute to the prediction.
❻ DREBIN explanations are often inconsistent across samples from a specific malware family.

1.1 Background on DREBIN
DREBIN is an Android malware detector that makes use of static analysis and machine learning
techniques to decide if a given Android application is likely to be malware or goodware. This
approach has been developed and validated using 5560 malware samples and 123 453 goodware
apps whose compilation dates are all within the period of August 2010 to October 2012.

Leveraging the Manifest file1 which is included in each Android app package, DREBIN extracts
four sets of string features from this file using the Android Asset Packaging Tool: Hardware compo-
nents, Requested permissions, App components, and Filtered intents. DREBIN further considers the
information contained in the disassembled code of the apps to extract four additional sets of string
features: Restricted API calls, Used permissions, Suspicious API calls, and Network addresses.

In order to feed the extracted sets of features to the classifier, a multi-dimensional vector space
has to be created, using the combination of all the features, from the eight categories, that are
extracted from the training apps. DREBIN feeds the multi-dimensional vectors of the training apps
to a Linear SVM classifier in order to make it learn the relationship between the inputs (features
vectors) and the outputs (samples are either malware or goodware). The trained classifier is then
used to predict the class of new and unseen Android apps (i.e., the test set). In DREBIN’s paper, the
authors state that this classifier detects malware apps with a recall of 0.94. The Machine-Learning
algorithm used by DREBIN, SVM, has already been used by many prior works on Android Malware
Detection. Therefore, we assume that the defining contribution that gave DREBIN its performance
are attributable to DREBIN’s selection of feature, rather than to its choice of algorithm.
Besides its effectiveness in detecting malware apps, DREBIN has made a breakthrough in the

field by providing explanations of its decisions. DREBIN relies on the weights of the Linear SVM
classifier in order to determine the features that contributed the most to the prediction. The notion
of explainability is extended to malware families, where DREBIN explains a family based on the
explanations given to the malware samples of that family.

2 DATASET AND STATISTICAL ANALYSIS OF DREBIN FEATURES
2.1 Dataset
To collect our dataset, we have mainly relied on AndroZoo which is a large collection of over
16 millions of Android apps regularly growing [5]. Our dataset is built by considering malware
1https://developer.android.com/guide/topics/manifest/manifest-intro

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://developer.android.com/guide/topics/manifest/manifest-intro

1:4 Nadia Daoudi, Kevin Allix, Tegawendé François Bissyandé, and Jacques Klein

and goodware samples that span several years (2017, 2018, and 2019), allowing to ensure that the
insights that we draw are related to the properties of DREBIN, and not the properties of a given
dataset.
AndroZoo makes available, for each app it stores, the number 𝑣𝑡_𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 that represents the

number of VirusTotal2-hosted antivirus that have detected this app as malware. Our goodware
samples are defined as the apps that have 𝑣𝑡_𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 = 0, to ensure that they have not been
flagged by any antivirus engine. Following on past studies, we have set the 𝑣𝑡_𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 value to
6, which means that our malware apps have been detected by at least six antivirus engines from
VirusTotal.

At the time of the experiments, we were able to collect 15 892 malware apps for the 2019 dataset.
The same number of malware apps (i.e., 15 892) was collected for the 2018 and 2017 datasets in
order to have comparable settings. As for the goodware, we have considered all the apps that meet
our criteria (i.e., the apps that have 𝑣𝑡_𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 = 0). Consequently, we have collected 175 327,
297 272, and 276 750 apps for 2019, 2018, and 2017 datasets respectively.
We name 2019_data, 2018_data, and 2017_data the collection of malware and goodware

samples that have been collected for 2019, 2018, and 2017 datasets respectively.
In addition to the three recent datasets we collect (2019_data, 2018_data, and 2017_data),

we also conduct our analysis on DREBIN’s original dataset in order to verify that our results are
generic and stable across the time. To this end, we have leveraged DREBIN’s malware dataset, which
consists of 5560 malware apps provided by original authors upon request. As for the goodware
dataset, the raw apps are not provided directly by the authors. We have searched them in AndroZoo
using the list of the apks’ SHA256 hashes provided by the authors. Consequently, we were able to
collect 57 307 apps (i.e., only 46.42% of the total number of goodware samples used in the DREBIN’s
paper). To have a dataset that is similar to the one used in the original paper, we have complemented
the goodware samples with 66 146 apps from the same period (i.e., August 2010 - October 2012),
and having 𝑣𝑡_𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 = 0. This dataset is noted DREBIN_Like_data. We note that 81 out of 5560
malware applications have failed in the features extraction process. Table 1 summarises the number
of applications in our collected datasets.

Table 1. Number of collected malware & goodware apps in our datasets

Dataset malware goodware

2019_data 15 892 175 327
2018_data 15 892 297 272
2017_data 15 892 276 750

DREBIN_Like_data 5560 123 453

2.2 DREBIN Replication
To conduct our experiments, we replicated the DREBIN approach [11], and checked its performance
using our datasets. We aim to assess DREBIN’s performance as described in the original publication
to compare our analysis with the results of this implementation.

2VirusTotal - https://www.virustotal.com is an online service that allows to collect Antivirus reports on uploaded samples

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://www.virustotal.com

A Deep Dive inside DREBIN 1:5

Hypothesis 1

DREBIN effectiveness is not specifically tied to its original dataset.

We split each of our four datasets into subsets (80% for training and 20% for testing). We then fit
Linear SVM classifiers on the training datasets and we calculate the performance scores on the test
subsets. We note that all our experiments are performed using the well-known machine learning
framework Scikit-learn3. We report in Table 2 the number of features that are used in order to
perform the classification for our four dataset, as well as the three performance measures: Recall,
Precision, and F1 score.

Table 2. Number of features and performance scores of our replication of DREBIN on each dataset

2019_data 2018_data 2017_data DREBIN_Like_data

Features 1 230 854 1 331 583 1 486 191 389 957
Recall 0.974 0.924 0.918 0.933

Precision 0.983 0.926 0.938 0.955
F1-score 0.979 0.925 0.928 0.944

As we can see from the Table, the three performance measures for the four datasets are very high,
especially for 2019_data, which reports an F1-score of 0.979 on a test dataset of 58 529 Android
apps. These scores confirm that DREBIN performs very well, not only with the DREBIN_Like_data
but also when evaluated with our own collected samples. DREBIN has been proposed in 2014 with
a dataset of malware and goodware samples that belong to the period from August 2010 to October
2012, and here it still performs very well with our recent collected datasets.

Finding 1

DREBIN provides excellent scores even when it is used with recent datasets (i.e., after
retraining). This suggests that the feature set is sufficiently generic to capture enough
concepts that are relevant to a large variety of malware along their variations across time,
as long as retraining is performed in the same time-frame.

Evaluating the performance of malware classifiers—like all security systems—is not a straightfor-
ward task [44]. Some experiments may provide brilliant results but still they do not reflect how
good the classifier is when it is deployed in realistic settings. The results presented in Table 2
show the performance of DREBIN when the training and test datasets belong to the same year.
However, when DREBIN is evaluated with training apps that are temporally precedent to testing
apps, Tesseract [35] has reported that the performance of this classifier drops remarkably. The
realistic setting of using Android malware detectors showed the limitation of DREBIN, which
questions the way how it works and to what extend it captures the behaviour of Android apps.
Inspired by Tesseract [35]’s results, we aim to perform an in-depth study on DREBIN in order to
have a better understanding of its learning.

3https://scikit-learn.org

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://scikit-learn.org

1:6 Nadia Daoudi, Kevin Allix, Tegawendé François Bissyandé, and Jacques Klein

2.3 Statistical Analysis of the features
Based on the results presented in Table 2, we can see that the four classifiers use a large number of
features in order to perform the classification. If we take the example of 2017_data, DREBIN uses
1 486 191 features, and hence for each sample it creates a 1 486 191-dimensional vector as part of its
learning/predicting process. This huge number of features is explained by the fact that DREBIN
extracts as much features as it finds in the apps, and it does not make any cleaning nor evaluation of
the importance nor the relevance of these features. In practice, not every feature in a dataset carries
information useful for discriminating samples; Some features might be redundant or irrelevant and
they may add randomness to the results. Given that DREBIN trains an SVM classifier with more
than 1 million features, it is unclear what are the exact features that are responsible for making
SVM decide how to classify a given Android app, nor how many features (out of 1 million) are
actually needed to enable it making this decision.

Finding 2

DREBIN relies on a huge number of features. The relevance and importance of each feature
however remains challenging to quantify w.r.t. the overall performance of DREBIN

Another issue that needs to be discussed is related to the quality of some features used by DREBIN.
As we have presented earlier, DREBIN uses string features that belong to App components and
Network addresses categories. For instance, the names of Android components4 are extracted
from the apps. Since these components names are defined and attributed by the developers of the
app, using them as features increases the possibility of DREBIN to overfit the dataset and decreases
its capability to generalise. Malware developers can easily change the names of App components
they use in their applications (for instance, with simple obfuscation techniques). Consequently, if
DREBIN relies on these features to classify the malware, attackers can easily bypass its detection.
The same applies for Network addresses category. Note that in their paper, DREBIN’s authors
stated that collecting the components’ names may help identify the well-known components of
malware. While this may reveal relevant within a specific time-frame, we are concerned that
changes in component names within variants will affect the classifier performance.
Analysing the features used in the previous section reveals that in our four datasets, at least

88.9% of the features belong to the App components and Network addresses categories. These
are string features that are chosen by the developer (e.g., a class name), and identify elements that
do not necessarily hold any semantic meaning beyond the scope of the sample. We refer to them
as “id-features”. Id-features are extracted from components (Activity, Service, Content Provider,
Broadcast Receiver) names and Network addresses. Since these features are extracted from the
apps of a specific dataset, they are ad-hoc to that dataset. Indeed, an id-feature that is present in a
dataset may not appear in another one, especially when malware evolves. Also, id-features can
be changed without affecting the behaviour of the apps. Consequently, a DREBIN classifier that
considers id-features of a given dataset is likely to perform poorly outside this dataset.
We present in Table 3 the exact number of id-features in 2019_data, 2018_data, 2017_data,

and DREBIN_Like_data.

4We recall that there are four types of components defined by the Android framework: Activity, Service, Broadcast Receiver,
and Content Provider

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Deep Dive inside DREBIN 1:7

Table 3. Number of id-features used in our replication of DREBIN

2019_data 2018_data 2017_data DREBIN_Like_data

Features 1 230 854 1 331 583 1 486 191 389 957
Id-features 1 160 420 1 197 831 1 326 301 347 007
% Id-features 94.28% 89.95% 89.24% 88.98%

Finding 3

DREBIN’s set of features contains a huge number of id-features. This raises a concern of
generalisability if malware samples are identified based on learning non-generic features.

3 DISCRIMINATORY POWER OF DREBIN’S FEATURES
As we have established in the previous section, DREBIN uses a huge number of features to perform
its task of prediction. Consequently, it is difficult to get insights about what DREBIN learns and
on what basis it performs the prediction. Specifically, we cannot tell if DREBIN needs all these
features for its task of detection nor what are its main decisive features. For a given Android app,
we are curious to know to what extent DREBIN has captured its malware/benign behaviour using
its set of features. This problem is our main motivation for this section, where we aim to reduce
the number of features of our four classifiers while preserving a comparable performance.

3.1 What are the key features that enable the prediction?
In this section, we conduct several experiments in order to analyse what does DREBIN classifier
learn. Our aim is to create variations of DREBIN classifiers that use a small subset of the initial
features, and still perform well on the dataset. Analysing these features will make it possible to
understand what this classifier captures, and what are the key features that direct its predictions.

Hypothesis 2

Some features can be removed with little to no loss in performance.

3.1.1 Method. We have developed our own custom feature selection approach to identify the
smallest set of features that still yields reasonably high classification scores. Our feature selection
technique unfolds the following 5 steps:
(1) We split each of our four datasets into subsets (80% for training and 20% for testing), and

we train a DREBIN classifier using all the features (i.e., exactly what we have done in the
previous section).

(2) With the feature ranking given by SVM, we train classifiers using the features that contribute
the most in the prediction, starting with the most important feature, and adding gradually
the other features. Each time we add a feature, we compute the F1 score. This procedure
is repeated until a subset of features yield a reasonably high F1-score. In our experimental
setup, we consider a F1-score ≥ 0.8 to be reasonably high.

(3) We repeat steps 1) and 2) 𝐾-times where we vary, each time, the training and testing sets.
This step is necessary given that the feature set is dependent on the training set. At the end
of this step, we have 𝐾 subsets of features: each subset offering reasonably high performance.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:8 Nadia Daoudi, Kevin Allix, Tegawendé François Bissyandé, and Jacques Klein

(4) The union of the 𝐾 sets of top features is further reduced by iteratively discarding features
that can be removed without any loss in the performance. Therefore, at the end of this step,
we have the minimal set of features that can achieve the same performance as the reference
classifier trained with the whole union of the 𝐾 sets.

We note that with our wrapper customised method, we do not aim to improve the prediction
performance nor to optimise DREBIN’s approach. Our aim is to create a classifier that reports good
performance and uses a small number of features.

3.1.2 Results. We have applied our features reduction method from the previous section on the
four datasets using 𝐾 = 10. For each dataset, we have evaluated the performance of DREBIN using
our reduced sets of features that we note Red1. Our evaluation is conducted using the 5-Folds
Cross-Validation technique. We present in Table 4 the number of features in Red1, for the four
datasets, and the results of predictions: Recall, Precision, and F1-score.

Table 4. Number of Red1 features sets and the performance scores

2019_data 2018_data 2017_data DREBIN_Like_data

Features 19 156 158 188
Recall 0.928 0.764 0.782 0.725

Precision 0.888 0.877 0.921 0.948
F1-score 0.908 0.816 0.846 0.822

As can be seen in Table 4, we were able to build DREBIN classifiers that, unlike DREBIN’s
replication, use only a small number of features with 2019_data, 2018_data, 2017_data, and
DREBIN_Like_data datasets. These classifiers have been created in such a way that even if they
use a small number of features, they still perform well and report high scores.
For 2019_data, we have been able to use 19 features in order to get a good F1-score (0.908)

whereas with DREBIN replication, SVM uses 1 230 854 features to achieve a F1-score of 0.979.
For 2018_data, 156 features that represent again a very small subset of the features used in

DREBIN replication (0.01%) are needed to recover 88.22% of the F1-score. Similar results have
been achieved with 2017_data, where 158 features (0.01% of the initial features) have enabled to
report good scores (e.g., F1-score = 0.846), which recovers 91.16% of the initial F1-score. As for
the DREBIN_Like_data, we were able to recover 87.08% of the F1-score using 0.048% of the initial
features.

Finding 4

A significantly smaller subset of DREBIN features is enough to provide reasonable perfor-
mance compared to the whole set of features. This suggests that most features in DREBIN
are at best redundant and at worst useless.

We now assess to what extent the reduced sets of features are indeed relevant for the DREBIN
classifier by investigating their information gain. The information gain of a feature represents the
amount of information gained about the predicted class when observing this feature itself. The
information gain can be used to verify if the reduced features sets, indeed, capture an important
amount of information.

For each dataset, we have calculated the information gain of all the features, and we have ranked
the features by their information gain. If a feature has a good ranking, it means that it captures more

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Deep Dive inside DREBIN 1:9

information (than the other features), and it is though important to the prediction. We present in
Figure 1 the distribution of rankings (based on info gain values) of features included in the reduced
features sets, and we represent their median values in blue colour. The distribution of rankings
highlights that the features in the reduced sets are among those having the highest information
gain.

Red1_2019 Red1_2018 Red1_2017 Red1_DREBIN_LIKE
0

100000

200000

300000

400000

500000

600000

Ra
nk

 b
as

ed
 o

n
In

fo
rm

at
io

n
Ga

in

367 3931 2433 1567 Medians

Fig. 1. Distribution of the rank of the features selected in the reduced features sets. Features are ranked
according to their information gain for the four datasets (Numbers in top of each distribution represent the

median values)

3.1.3 Analysis. As shown previously, we were able to collect sets of features that, not only are
the most relevant features for the DREBIN classifier, but also enable to report good prediction
performance when they are used “alone” to train the classifier. Examining these features can lead
to further insights about DREBIN’s discriminative features.
Specifically, studying the distribution of the features in the dataset and their malicious/benign

character is a potential lead to understand how the classifier works. Also, analysing the features
helps to validate DREBIN’s capabilities, especially to confirm whether or not it learns general
characteristics of goodware and malware apps.

We list in the following the 19 features present in the reduced features sets Red1 of 2019_data
dataset.
(1) activitylist_com.silverbat.knightage.temmidlet
(2) activitylist_com.stub.stub08.appupdateactivity
(3) activitylist_com.twofloorhousedesign.lukoni.adsactivity
(4) activitylist_com.e4a.runtime.android.mainactivity
(5) restrictedapilist_android.telephony.telephonymanager.getline1number
(6) restrictedapilist_android.support.v4.view.

accessibility.accessibilitynodeprovidercompat.performaction
(7) usedpermissionslist_android.permission.wake_lock
(8) suspiciousapilist_ljava/lang/runtime;->exec
(9) usedpermissionslist_android.permission.read_phone_state
(10) restrictedapilist_android.provider.settings$system.putstring
(11) usedpermissionslist_android.permission.get_accounts
(12) suspiciousapilist_landroid/telephony/telephonymanager.getsubscriberid
(13) restrictedapilist_android.media.mediaplayer.stop
(14) restrictedapilist_android.os.vibrator.cancel
(15) restrictedapilist_android.net.connectivitymanager.isactivenetworkmetered

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:10 Nadia Daoudi, Kevin Allix, Tegawendé François Bissyandé, and Jacques Klein

(16) requestedpermissionlist_android.permission.read_phone_state
(17) restrictedapilist_android.accounts.accountmanager.getaccounts
(18) suspiciousapilist_landroid/view/keyevent.getdeviceid
(19) restrictedapilist_android.media.audiorecord.<init>

For 2019_data, we can notice that the reduced features sets contain four id-features (from the
App components category) which are features number 1, 2, 3, and 4. The other features are not
id-features and they can give insights about some activities the app performs.
As for the reduced features sets of 2018_data, 2017_data, and DREBIN_Like_data, they also

contain id-features that belong to both App components and Network addresses categories.
Specifically, the id-features represent 61%, 60%, and 77% of Red1 for 2018_data, 2017_data and
DREBIN_Like_data respectively. We remind that Red1 is the selection of the most important
features of DREBIN.
The good results of DREBIN may be explained by code reuse among malware, coupled to the

significant presence of id-features that excel at capturing elements shared across apps. Specifically,
when the code of a malware app is reused, the attacker may not change the app components
features set (i.e., activity names for example), which results in DREBIN predicting an application as
malware because it contains the same component name of the app from which the code is reused
(but also because of the presence of other relevant features when they are present in the app).

To illustrate the impact of id-features on the prediction, we have examined a malware APK5 that
contains one id-feature from Red1 (i.e., activitylist_com.silverbat.knightage.temmidlet).
This application is predicted by DREBIN as malware. However, when we make a slight modification
in the app by changing the name of this activity to another arbitrary name, the app escapes
the detection of DREBIN. Note that changing the name of this id-feature does not impact the
actual functioning of the app. It is a simple name that is chosen by the developer (or the attacker).
Consequently, malware apps can easily evade the detection by changing the names of the id-features
that are considered relevant by DREBIN, which raises a concern of generalisability.

Finding 5

A significant part of DREBIN’s most relevant features are id-features.

Our method enables to identify the most important features that are related to the dataset at
hand. The number and the composition of the features that we have collected differ from one
dataset to another. This situation makes the reduction of feature sets dependent to the datasets, as
we have noted with the four datasets (cf. Table 4).

3.2 Are all the features needed to achieve similar results?
The performance achieved using our proposed reduced set of features is inferior to the full DREBIN.
We are curious to know how many features are effectively needed to achieve similar performance.

Hypothesis 3

Only a subset of the features is needed to reach the performance reported when all the
features are used

56013EDCCE42F8B0548AD750682BCB08C

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Deep Dive inside DREBIN 1:11

3.2.1 Method. For this experiment, we select the features based on the information gain as follows:
(1) We split each of our four datasets into subsets (80% for training and 20% for testing), and we

calculate the F1-score using all the features (the ones constructed based on the training set)
(2) We calculate the information gain of all the features and we rank them in descending order.
(3) We train SVM classifiers with these features starting with the one feature that has the highest

rank, and adding gradually the other features. Each time we add a feature, we calculate the
F1 score. This procedure is repeated until the difference between this F1 score and the one
obtained in step 1 is smaller than 0.01.

(4) The features from the previous step are further reduced by iteratively discarding features
that can be removed without any loss in the performance. At the end of this step, we have
the minimal set of features that can achieve the same performance as our replicated DREBIN.
The resulted features are noted Red2.

3.2.2 Results. We apply the previous method to our four datasets, and we report the results in
Table 5. We note that in this setup, it is not possible to use the Cross-Validation technique since we
aim to compare the features and the scores of two dependant classifiers; one uses all the features
(that are specific and depend on the training data), and the other classifier is trained with features
that are an optimisation of the first classifier’s features.

Specifically, our results in Table 5 are compared to the results in Table 2.

Table 5. Number of optimised features for Red2 and the performance scores

2019_data 2018_data 2017_data DREBIN_Like_data

Red2

Features 73 1183 241 296
Recall 0.969 0.92 0.892 0.894

Precision 0.975 0.929 0.945 0.978
F1-score 0.972 0.925 0.918 0.934

DREBIN Replication F1-score 0.979 0.925 0.928 0.944
(cf. Table 2)
of Features 1 230 854 1 331 583 1 486 191 389 957

Red2 % Features Reduction 99.99% 99.91% 99.98% 99.92%

Overall, the results demonstrate that only a small set of features is needed to report scores
that are as high as the scores achieved with all the features. We were able to reduce the initial
features set by at least 99.9% for 2019_data, 2017_data, and DREBIN_Like_data respectively. As
for 2018_data, we observe that the number of features in Red2 is higher. This can be explained by
the diversity and the composition of this dataset (i.e., it contains the highest number of goodware
apps).

Finding 6

Only a small sets of features are needed to achieve results that are as excellent as the results
reported when all the features are used

We recall to the reader that our aim, through this investigation is not to replace DREBIN’s
features with those that we collect. Instead, we aim to identify DREBIN’s most relevant features,
i.e., those that are necessary to its predictions. Such features can be further analysed in order to get
insights about DREBIN’s capabilities.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:12 Nadia Daoudi, Kevin Allix, Tegawendé François Bissyandé, and Jacques Klein

3.2.3 The impact of DREBIN’s features on the learning process. In order to get insights about how
the performance of DREBIN evolves with the number of features, we provide in Fig. 2 the plots
that show the impact of adding gradually the features ranked with the information gain on the
prediction. Each dataset is split into two subsets (80% for training and 20% for testing). We calculate
the recall, the precision, and the F1-score starting with the most important feature and adding
gradually the other features based on their information gain rank. For each dataset, the first graph
represents the plots of recall, precision, and F1-score as a function of the number of ranked features
used in the prediction. The plots in the right are a zoom of the first plots on recall, precision, and
F1-score using the first 4000 features.

As we can see from the first plots, the performance of prediction is generally stable after the first
highly ranked features for the four datasets. The recall and the precision may increase at a certain
time (after adding more features), but they evolve inversely. The F1-score metric that captures both
the recall and the precision is almost stable when adding more features. The zoom plots confirm this
statement since with the top 4000 highly ranked features, the performance metrics are generally
high and they are close to the recall_all, precision_all, and f1_all that we present in the plots with
straight lines. These metrics are calculated using all the features from the training datasets.

These results suggests that DREBIN is notably impacted by a small number of dominant features
that have the highest info gain. It is however hardly affected by a huge number of features that
have less information gain. We also observe that the detection performance does not monotonically
increase with the addition of features. Indeed, for three of our datasets, there is actually a drop in
performance after a number of features are included, and it can take up to one million additional
features to come back to, and marginally improve the performance obtained with the Red2 features.

Finding 7

A huge number of features have a minor influence on the prediction. Furthermore, adding
subsets of features can even result in a performance decrease.

3.2.4 ONE-feature DREBIN. In the previous section, we have seen that many features have a
minor impact on DREBIN’s prediction. Based on Figure 2, we also observe that a single feature
(i.e., the first feature that has the highest information gain) enables DREBIN to yield a high
detection performance for 2019_data, and 2018_data. As for 2017_data and DREBIN_Like_data,
the detection performance of DREBIN using the single feature is null. We present in Table 6 the
prediction scores of DREBIN trained using the first feature that has the highest info gain and
evaluated with 5-Fold Cross-Validation.

Table 6. Performance scores of ONE-Feature-DREBIN (i.e., the feature that has the highest info gain)

2019_data 2018_data 2017_data DREBIN_Like_data

Features 1 1 1 1
Recall 0.827 0.614 0 0

Precision 0.765 0.622 0 0
F1-score 0.795 0.618 0 0

We observe that the overall performance of DREBIN using this ONE feature is surprisingly good
for 2019_data and 2018_data. For both of these two datasets, the ONE feature is from DREBIN’
"Suspicious API Calls” features set, which contains API calls that have access to sensitive data or

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Deep Dive inside DREBIN 1:13

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

2019 dataset

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

2018 dataset

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

2017 dataset

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

DREBIN_LIKE dataset

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e6

0.0

0.2

0.4

0.6

0.8

1.0

precision
f1_score
recall

1 500 1000 1500 2000 2500 3000 3500 40000.0

0.2

0.4

0.6

0.8

1.0

precision_all
f1_score_all
recall_all
precision
f1_score
recall

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e6

0.0

0.2

0.4

0.6

0.8

1.0

precision
f1_score
recall

1 500 1000 1500 2000 2500 3000 3500 40000.0

0.2

0.4

0.6

0.8

1.0

precision_all
f1_score_all
recall_all
precision
f1_score
recall

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1e6

0.0

0.2

0.4

0.6

0.8

1.0

precision
f1_score
recall

1 500 1000 1500 2000 2500 3000 3500 40000.0

0.2

0.4

0.6

0.8

1.0

precision_all
f1_score_all
recall_all
precision
f1_score
recall

1 100000 200000 300000 4000000.0

0.2

0.4

0.6

0.8

1.0

precision
f1_score
recall

1 500 1000 1500 2000 2500 3000 3500 40000.0

0.2

0.4

0.6

0.8

1.0

precision_all
f1_score_all
recall_all
precision
f1_score
recall

Zoom

Zoom

Zoom

Zoom

Cumulated features ranked with IG

Sc
or

es

Fig. 2. The performance of DREBIN using the cumulated features ranked with Info Gain

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:14 Nadia Daoudi, Kevin Allix, Tegawendé François Bissyandé, and Jacques Klein

resources. This feature is: landroid/content/context.getsystemservice. After inspecting this
feature’s presence in 2019_data apps, we have found that it is present in 17.3% of the malware and
97.7% of the benign apps. In 2018_data, this feature exists in 38.6% malware and 98% benign apps.
In these two datasets, the ONE feature is present in a large majority of the benign apps, and it is
less frequent in malware apps (i.e., it is present in less than 50% of the apps).

Concerning 2017_data and DREBIN_Like_data, their ONE feature is restrictedapilist_android.
support.v4.view.accessibility.accessibilitynodeprovidercompat.performaction and
requestedpermissionlist_android.permission.send_sms respectively. The ONE feature of
2017_data is present in 8.8% malware, and 69.6% goodware. As for DREBIN_Like_data ONE fea-
ture, it exists in 53.4% malware, and 4.3% benign apps. For these two datasets, the performance of
DREBIN using these ONE feature is null.
We have also tested the ONE feature of 2019_data and 2018_data on both 2017_data and

DREBIN_Like_data, but the detection performance is again null. The examination of this feature’
presence in 2017_data and DREBIN_Like_data reveals that it is present in 75.1% and 81.6% of their
malware apps, and in 96.9% and 72% of their benign apps respectively. This observation suggests
that when DREBIN is trained using a feature that is predominant in goodware apps (or malware
apps), it tends to associate its presence with the benign class (or the malware class).

Finding 8

A single feature can offer a surprisingly high detection rate.
An analysis of features is therefore necessary to assess their genericity (for detecting a variety
of malware variants) as well as their discriminative power (for leading to accurate prediction).

4 ANALYSIS OF DREBIN CLASSIFIER EXPLANATIONS
In this section, we aim to perform an in-depth analysis of DREBIN’s explanations to assess how well
this approach explains the prediction (Section 4.2), and how consistent are the explanations given
by DREBIN to malware samples of the same family (Section 4.3). Before diving into the analysis, in
Section 4.1, we first present an overview of the malware families present in our datasets.

4.1 An overview of malware families
In this section, we present and study the distribution of malware families in our four datasets. For
each malware sample, we collect from VirusTotal the detection reports provided by the hosted
antivirus engines. Then, we leveraged AVCLASS [40] to infer a unique malware family label for
each sample. We present in Fig 3, the distribution of malware families in 2019_data, 2018_data,
2017_data, and DREBIN_Like_data as provided by AVCLASS.
We notice that we have a dominant malware family in three datasets. The family (jiagu)

represents 78.6%, 50.24%, and 28.29% of the malware in 2019_data, 2018_data, and 2017_data
respectively. The difference of the distribution of this malware family in the three datasets can
explain the very good results we were able to achieve for 2019_data. Indeed, in this specific dataset,
around 80% of malware samples are from the same family. We postulate that by classifying these
samples correctly, DREBIN can exhibit a very good recall. With this dataset, we were also able to
retrieve a small number of features either to get insights about DREBIN’s learning or to report
similar scores as when all the features are used. The other datasets required more features to
perform similar performance, potentially due to the diversity of apps in these datasets. For our next
experiments we will limit ourselves to DREBIN_Like_data malware since this dataset is the most
diverse in terms of represented malware families.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Deep Dive inside DREBIN 1:15

jiagu
tencentprotect

dnotua
secneo
smsreg

amaa
leadbolt
smspay
wapron

ewind
hiddad

singleton
others *

12500
164
103
120
21
30
12
31
14
42
14

2731
110

2019 dataset
jiagu

smspay
dnotua
smsreg

ewind
leadbolt
smsspy
airpush

tencentprotect
hiddad

baiduprotect
tachi

secneo
fakeapp

hiddenads
singleton
others *

7985
195

748
570

81
114
92
72
145
65
53
120
86
111
76

4435
944

2018 dataset
jiagu

anydown
tencentprotect

revmob
airpush
smsreg
autoins

fakeapp
leadbolt

tachi
piom
hifrm

baiduprotect
plankton

dnotua
inmobi

singleton
others *

4496
58
226
73
294
208
76

476
197
136
79
258
169
52
55
57

7718
1264

2017 dataset
ginmaster

boxer
droidkungfu

gappusin
fakeinst

plankton
pjapps

golddream
basebridge

lotoor
kmin

droiddreamlight
opfake

fakenotify
batterydoctor

fakerun
iconosys
mobiletx
others *

347
394

666
58

578
628

56
69

290
64

146
81

532
84

132
52

152
69

1081

DREBIN_LIKE dataset

* 40 families with 1 samples 10 * 140 families with 1 samples 50 * 191 families with 1 samples 50 * 161 families with 1 samples 50
Frequencies

M
al

w
ar

e
fa

m
ili

es

Fig. 3. The distribution of malware families in the datasets

4.2 How informative are the explanations given by DREBIN?
In this section, we aim to assess the quality of the explanations provided by DREBIN classifier.
Specifically, we examine whether the information contained in these explanations is complete and
adequately explains the prediction. We use "positive features" to refer to the features that have a
positive SVM weight. DREBIN suggests that the top 𝑘 positive features can be used to explain the
prediction of malware applications. We formulate the following hypothesis:

Hypothesis 4

DREBIN’s top positive features are sufficiently informative

To verify our hypothesis, we examine two components:

(1) The contribution of the top positive features represented by their SVM weights;
(2) The number of the top positive features to use in the explanation.

4.2.1 The contribution of DREBIN top positive features. One key contribution of DREBIN is its
ability to explain the detection by outputting the features that have the highest SVM weights after
applying its linear transformation.

An example of DREBIN’s top positive feature of a malware app that belongs to “droidkungfu” fam-
ily in DREBIN_Like_data is: (0.966, ’intentfilterlist_android.intent.action.sig_str’). In this example,
0.966 represents the SVMweight associatedwith the feature ’intentfilterlist_android.intent
.action.sig_str’.
DREBIN provides top-k (with 𝑘 = 5 in the experiments of the original paper) features that

are relevant to the prediction, with their weight values. However, this information may actu-
ally not be sufficient to infer to what extent each feature was actually important (in terms of
overall contribution for the detection, in comparison with all other features). Indeed, the con-
tribution of the top-5 features may still be lower than the contribution of all other features
combined. For instance, the value of 0.966 in this example does not reflect how powerful is
’intentfilterlist_android.intent.action.sig_str’ compared to the other positive features.
The raw SVMweights suggested by DREBIN do not then quantify the importance of each individual
feature to the prediction.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:16 Nadia Daoudi, Kevin Allix, Tegawendé François Bissyandé, and Jacques Klein

Finding 9

DREBIN’s explanation does not reflect how much the features contribute to the prediction

4.2.2 The number of DREBIN’s top positive features. Another aspect we aim to investigate about
DREBIN’s explainability is how many top positive features are needed to explain the prediction.
DREBIN’s publication suggests that Android apps can be explained using the top 𝑘 features, but
it does not specify how to chose this number. Nonetheless, its evaluation experiments have been
conducted using 𝑘 = 5 top positive features for each family.

To verify if a specific number of the top positive features can be fixed to explain the prediction
of the apps, we examine the distribution of the positive features in the apps of the top ten malware
families of DREBIN_Like_data.

Specifically, if the number of the positive features varies remarkably between the apps in general
and between samples of the same family in particular, it would be difficult to decide about the
threshold to fix for this number.

We provide in Fig. 4 the number of all the positive features in the malware of the top ten families
of DREBIN_Like_data.

droidkungfu plankton fakeinst opfake boxer ginmaster basebridge iconosys kmin batterydoctor
Malware families

0

20

40

60

80

100

N
um

be
r

of
 p

os
it

iv
e

fe
at

ur
es

Fig. 4. The distribution of the number of positive features in the malware of the top 10 families of
DREBIN_Like_data

We notice that the number of all positive features differs remarkably from one app to another,
and it is even different between apps that belong to the same family. This number ranges from four
to more than a hundred features in the malware of DREBIN_Like_data test set. If this number is
fixed at five, we are confident that the top five features adequately explain the apps containing a
small number of positive features. However, the top five features might fail to capture the primary
features that manipulate the prediction of the apps that contain a large number of positive features,
especially if the positive features have similar contributions. This problem is accentuated by the
fact that the contribution of the features is not determined. For instance, if an application contains
many positive features, each with a small contribution, we will not be able to decide about the
threshold to fix for 𝑘 in order to explain the prediction.

Finding 10

The number of positive features differs from one app to another and within apps of the
same family, making it difficult to fix a threshold for the top positive features that explain
the prediction.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Deep Dive inside DREBIN 1:17

4.3 How consistent are the explanations given to samples of the same malware family?
After showing that the number of positive features differs between samples of the same malware
family, we seek to investigate the consistency of the top positive features within the same family
using DREBIN_Like_data. In our experiments, we use top five positive features to explain the
prediction of the apps as it is suggested in DREBIN’s paper.

Hypothesis 5

Malware samples of the same family are generally explained with the same features

To verify our hypothesis, we visualise the distribution of the explanations in each of the top
ten families of DREBIN_Like_data. We plot for each malware sample the top five positive features
that explain its prediction. Figure 5 shows the distribution of these explanations. For each malware
sample, we plot the top five positive features with different colours to distinguish their rank (in
explaining the prediction of the app). The interpretation of the five colours is explained in the
Figure. Each row represents a positive feature that has been used to explain at least one app that
belongs to the family, and each column represents a malware sample. Ideally, we should see five
straight lines with the following ordering of colours from top to bottom: red, blue, green, pink, and
brown. This ideal graph reflects that the same five features are used to explain malware apps that
belong to the same family. A line of the same colour shows that a feature have the same importance
in the prediction of all the malware that belong to the family. The visual lecture of Fig. 5 suggests
that some families use the same features to explain most of their apps (e.g., “droidkungfu” and
“plankton” families). However, the overlapping colours in the sub-graphs show inconsistency of
explanations.

We have also calculated the overlap between the top five positive features in the malware samples
of the ten families. We provide in Fig. 6 the distribution of the results.

We notice that for some families (e.g., basebridge and batterydoctor), there is a significant overlap
of top features across samples in the family: there is a consistency of explanations for the majority
of samples in the family. In some other families (e.g., fakeinst and opfake), however, the top features
are not consistent across family samples. These findings suggest that top features that are used for
explanations are not systematically sufficient to characterise a malware family.
We further report in Table 7 the total number of distinct top five features used in the top ten

malware families of DREBIN_Like_data. For each family, we provide the number of samples (found
in the test set) and the total number of distinct features used to explain its malware samples (number
of rows in Fig. 5 visualisations). We notice that the number of distinct top five features used to
explain the families’ samples clearly exceeds five features. This number is generally higher when
there are more samples in the malware family. The numbers in Table 7 suggest that DREBIN refers
to a variety of features to “explain” samples within the same family.

Finding 11

Not all malware families can be characterised by the explanations provided by DREBIN.

5 ASSESSMENT OF DREBIN’S LEARNING POTENTIAL
In this section, we aim to evaluate DREBIN’s ability to capture the concept of malware families,
both within the family (i.e., if it is able to assemble malware samples that belong to the same family),
and across families (i.e., if it separates malware that belong to different families)

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:18 Nadia Daoudi, Kevin Allix, Tegawendé François Bissyandé, and Jacques Klein

0 20 40 60 80 100 120 140

droidkungfu

0 20 40 60 80 100 120

plankton

0 20 40 60 80 100

fakeinst

0 20 40 60 80 100

opfake

0 10 20 30 40 50 60 70

boxer

0 10 20 30 40 50

ginmaster

0 10 20 30 40 50

basebridge

0 5 10 15 20 25 30 35

iconosys

0 5 10 15 20 25

kmin

0 5 10 15 20 25 30

batterydoctor

Ranked 5
Ranked 4

Ranked 3
Ranked 2

Ranked 1

Samples

Fe
at

ur
es

Fig. 5. The distribution of the top five features in the top 10 families of DREBIN_Like_data

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Deep Dive inside DREBIN 1:19

droidkungfu plankton fakeinst opfake boxer ginmaster basebridge iconosys kmin batterydoctor
0

1

2

3

4

5

Nb
r o

f o
ve

rla
pp

in
g

fe
at

ur
es

Fig. 6. The distribution of the overlapping top five features in the top 10 families of DREBIN_Like_data

Table 7. Total number of distinct top features in the top ten malware families of DREBIN_Like_data

Families Nb of samples Nb of features

droidkungfu 142 48
plankton 118 32
fakeinst 98 48
opfake 97 35
boxer 69 25

ginmaster 57 39
basebridge 48 30
iconosys 38 20
kmin 27 11

batterydoctor 30 9

5.1 Does DREBIN capture the concept of malware family (within the family)?
To answer our question, we represent malware samples in DREBIN_Like_data by their embedded
vectors, and we make the following hypothesis:

Hypothesis 6

In the 𝑛-dimensional space, DREBIN assembles malware samples of the same family

To verify our hypothesis, we rely on the Euclidean distance between feature vectors to examine
if DREBIN’s features enable to assemble malware samples that belong to the same family in the
𝑛-dimensional space. Our aim is to compare the distribution of the distances and verify if malware
samples that belong to the same family have smaller distances (i.e., they are close to each other in
the 𝑛-dimensional space) compared to those from the ten families combined. Specifically, for each
family, we compare the Euclidean distance within the family and within the top ten families of
DREBIN_Like_data combined.
We plot in Figure 7, the distribution of the distances within the top ten families combined,

that we note “all”, and the distribution of the distance within each of the ten families from
DREBIN_Like_data which we note “family”.

As we can see in Fig. 7, the average Euclidean distances within a family are always smaller than
the distances calculated using malware from the ten families combined.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:20 Nadia Daoudi, Kevin Allix, Tegawendé François Bissyandé, and Jacques Klein

all droidkungfu plankton fakeinst opfake boxer ginmaster basebridge iconosys kmin batterydoctor
0

2

4

6

8

10

12

14

Eu
cl

id
ea

n
di

st
an

ce

Fig. 7. The distribution of the distances within a family versus the distribution of the distances within all
the ten families of DREBIN_Like_data combined

We have further compared the distribution of the distances within a family and within the top
ten families combined using the Mann-Whitney-Wilcoxon test [29, 46]. This test is used to verify
whether two data distributions are identical.

For each of the top ten families, we calculate the p-value of the Mann-Whitney-Wilcoxon test
using the distances within the family and the distances within the ten families combined. In the
ten Mann-Whitney-Wilcoxon tests, the p-value6 is smaller than 9.42𝑒−59. This result indicates
that the null hypothesis is rejected and the difference between the data distributions is statistically
significant. Therefore, we can conclude that the distributions of the distances within a family and
within the ten families combined are different.

Finding 12

DREBIN’s features indeed offer a representation of apps that enables to group together
malware apps that belong to the same family.

5.2 Does DREBIN capture the concept of malware family (across families)?
After evaluating DREBIN’s ability to assemble malware samples within the same family, we seek to
investigate if, in its feature space, DREBIN separates samples from different families.

Hypothesis 7

In the 𝑛-dimensional space, DREBIN separates malware apps of different families

To verify our hypothesis, we compute, for each of the top tenmalware families in DREBIN_Like_data,
the Euclidean distance within the family (similarly to Section 5.1) and across families. We note (𝐹𝑖 -
𝐹 𝑗), the distances across family 𝑖 and family 𝑗 for (1 ≤ 𝑖 ≤ 10) and (1 ≤ 𝑗 ≤ 10). Similarly to the
previous Section, we also calculate the distances within all the top ten families combined that we
note “all”. We provide in Figure 8 the distribution of these distances in the top ten families. we draw
the median of the distances within the family with a straight blue line to facilitate the comparison.
Overall, the average distances within a family are smaller than the distances across families.

For each of the ten top families, we have also compared the distribution of the distances within a
family and across families using the Mann-Whitney-Wilcoxon test. We have conducted the test as
explained in Section 5.1. For all the families, the p-value is smaller that 1.29𝑒−10. The null hypothesis

6The null hypothesis under this test assumes that the two distributions are indeed identical, and it is rejected if the p-value
is smaller than 𝛼 = 0.05.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Deep Dive inside DREBIN 1:21

all F1 - F1 F1 - F2 F1 - F3 F1 - F4 F1 - F5 F1 - F6 F1 - F7 F1 - F8 F1 - F9 F1 - F10
0

5

10

15
droidkungfu (F1)

all F2 - F1 F2 - F2 F2 - F3 F2 - F4 F2 - F5 F2 - F6 F2 - F7 F2 - F8 F2 - F9 F2 - F10
0

5

10

15
plankton (F2)

all F3 - F1 F3 - F2 F3 - F3 F3 - F4 F3 - F5 F3 - F6 F3 - F7 F3 - F8 F3 - F9 F3 - F10
0

5

10

15
fakeinst (F3)

all F4 - F1 F4 - F2 F4 - F3 F4 - F4 F4 - F5 F4 - F6 F4 - F7 F4 - F8 F4 - F9 F4 - F10
0

5

10

15
opfake (F4)

all F5 - F1 F5 - F2 F5 - F3 F5 - F4 F5 - F5 F5 - F6 F5 - F7 F5 - F8 F5 - F9 F5 - F10
0

5

10

15
boxer (F5)

all F6 - F1 F6 - F2 F6 - F3 F6 - F4 F6 - F5 F6 - F6 F6 - F7 F6 - F8 F6 - F9 F6 - F10
0

5

10

15
ginmaster (F6)

all F7 - F1 F7 - F2 F7 - F3 F7 - F4 F7 - F5 F7 - F6 F7 - F7 F7 - F8 F7 - F9 F7 - F10
0

5

10

15
basebridge (F7)

all F8 - F1 F8 - F2 F8 - F3 F8 - F4 F8 - F5 F8 - F6 F8 - F7 F8 - F8 F8 - F9 F8 - F10
0

5

10

15
iconosys (F8)

all F9 - F1 F9 - F2 F9 - F3 F9 - F4 F9 - F5 F9 - F6 F9 - F7 F9 - F8 F9 - F9 F9 - F10
0

5

10

15
kmin (F9)

all F10 - F1 F10 - F2 F10 - F3 F10 - F4 F10 - F5 F10 - F6 F10 - F7 F10 - F8 F10 - F9 F10 - F10
0

5

10

15
batterydoctor (F10)

Families

Eu
cl

id
ea

n
di

st
an

ce

Fig. 8. The distribution of the Euclidean distances within families versus the distances across families in the
top ten families of DREBIN_Like_data

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:22 Nadia Daoudi, Kevin Allix, Tegawendé François Bissyandé, and Jacques Klein

is then rejected, which indicates that the difference between the distributions of the distances
within families and across families is statistically significant.

Finding 13

DREBIN’s representation enables the separation of samples that belong to different malware
families.

6 DISCUSSION
Nowadays, in the literature, a malware detection approach is considered to “work” when its
assessment exhibits high detection scores. These scores however have proven to be biased by
datasets [35] or evaluation methodology [3, 4]. In reality, practitioners expect more in-depth
analysis that provides confidence or guarantees that approaches work. An example first step in this
direction was implemented by DREBIN, which proposes explanations for its predictions, towards
facilitating manual validation by analysts.
Given the importance of DREBIN as a literature milestone, we proposed to dive deep into its

inner working to perform an investigation around its features, its explanations, etc. Unfortunately,
in the absence of guidelines in the literature, our explorations were guided by our past experiences
and intuitions. Overall, our study findings are somewhat inconclusive, which highlights that the
problem of answering “why it works” is a fundamentally difficult and unresolved problem.

6.1 Answering “Why it works”
A large body of malware detection literature report high performance scores using machine learning.
Our in-depth analysis in this paper revealed that it is hard to comprehensively characterise the
reasons behind the good performance of a state-of-the-art classifier: (1) a substantial number of
used features appear to be redundant; (2) the detection explanations are not always consistent for
samples in the same family.
Our first tentative to understand “why a classifier works” calls for a more focused research

initiative around a framework that would provide tools and techniques to thoroughly assess
malware detectors beyond detection scores. Such a framework would define the axes of analysis
that each new malware detector needs to investigate beyond machine learning detection scores.
The framework would suggest requirements and analyses that are crucial to gain insights into
Android malware approaches’ inner-working, scope their properties, highlight their strengths and
uncover their limitations (or even pitfalls). The overall ambition is thus to ensure that researchers
can associate their reported performance with specific key design choices in their contributions.

6.2 Implications of our findings
Our study revealed that many features which are sufficient to provide reasonable performance for
the DREBIN classifier are actually id-features. We postulate that this may pose a generalisation
problem. Our study further showed that many of the relevant features that contributed to the
performance of DREBIN are indeed id-features.
We noted that a large proportion of malware can be detected using a single feature for two of

our datasets, which further highlights both a) the fundamental importance of evaluation datasets
(in particular, of the diversity in these datasets), and b) the necessity to assess whether features
capture actual indicators of maliciousness or spurious correlations instead.
The consistency, or lack thereof, of top features for predicting samples in a same family raises

questions on the relevance of DREBIN explanations.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Deep Dive inside DREBIN 1:23

7 RELATEDWORK
Our selection of DREBIN is motivated by its notable impact on many research that have compared
against it (Section 7.1). Other studies have raised concern about the evaluation challenges (Sec-
tion 7.2), and the biases that may affect machine learning-based malware experiments (Section 7.3).

7.1 The impact of DREBIN
DREBIN is a well-known Android malware detector that has attracted researchers’ attention since
its publication in 2014. To evaluate their approaches, several authors have provided an experimental
comparison with DREBIN. CASANDRA [33] is an online learning-based malware detector that
has been evaluated against DREBIN, and a malware detector that relies on static analysis of the
apps control-flow graph [3]. CASANDRA’s effectiveness is demonstrated using DREBIN’s malware
dataset and 5000 randomly collected goodware applications. SIGPID [26] is a malware detector
that is based on significant permissions features. Its authors have proposed an experimental
comparison against DREBIN’s approach and PERMISSION-INDUCED RISK malware detector [45].
Many researchers have adopted similar strategy by comparing against DREBIN (eg., DroidOL [34],
MalScan [47], RevealDroid [15], ASTROID [14], RepassDroid [48], TinyDroid [10], CDGDroid [49],
DexRay [12], and a malware detector that relies on control flow graph and data flow graph of
Android apps [50]).

Other researchers have chosen to develop their approaches by relying on DREBIN’s malware
dataset. DySign [23] is a fingerprinting technique for Android malware’s dynamic behaviours that
has been evaluated using malware samples from DREBIN dataset. APK Auditor [42] is a static
analysis-based technique that characterises and classifies Android applications. Its authors have col-
lected their evaluation dataset from DREBIN, Malware Genome Project [55], and Contagio mobile7.
DREBIN’s malware dataset has extensively contributed in the development of numerous research
due to its availability (EC2 [9], AOMDroid [22], AspectDroid [2], a mobile botnet classification
technique [53], StackDroid [37], a malware detector based on a Factorization Machine [24], an
Android malware family Classifier [31]). Moreover, some research [17, 21] have studied the dataset
itself.
DREBIN’s approach has also been widely used in the context of adversarial attacks research.

In 2017, DREBIN’s approach has been used to study the impact of adversarial attacks on linear
and non-linear classifiers [1]. In this study, the authors have demonstrated that a blind adversary
can make DREBIN’s performance drop by 88% when perturbing only 25% of the features. Another
work [13] has proposed a learning algorithm to enhance linear models’ security after showing that
DREBIN’s performance can be deteriorated if skilled attackers manipulate it. Similarly, DREBIN
has contributed on many other adversarial attacks research [18–20, 25, 36, 43, 51] which proves
that this classifier have a significant impact on the research community.

7.2 Evaluation challenges
The evaluation of security systems has become a major concern in recent years. A recent study [44]
has argued that the performance evaluation involves many operations and can never be fully
expressed with a single number. Another study [41] has discussed the challenges in the intrusion
detection approaches that rely on machine learning. Its authors argue that it is important to
understand what the system is doing and what are its capabilities and limitations, insisting on the
fact that the community does not benefit from trying some other combinations of ML algorithms
and features set with some known dataset.

7http://contagiodump.blogspot.com

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

 http://contagiodump.blogspot.com

1:24 Nadia Daoudi, Kevin Allix, Tegawendé François Bissyandé, and Jacques Klein

In malware experiments, researchers [38] have stressed the importance of performing prudent ex-
perimental evaluations in order to objectively assess the results. They have identified shortcomings
after surveying papers from top-tier and less prominent venues, and they have proposed guidelines
based on transparency, realism, correctness, and safety for prudent malware experiments.
Another work [39] has studied the impact of different factors on ML-based Android malware

detectors performance using their own ML-approach. To study whether using more features always
provides better results, the authors have investigated DREBIN’s set of features (and DroidSIFT [54]
features set), and they have concluded that when removing the id-features, the performance of
the classifier increases. Although the authors have not relied on the original implementation of
DREBIN (i.e., DREBIN’s features set + K-NN algorithm), both their work and ours demonstrate
that only a small subset of DREBIN’s features set is needed to report a high detection performance.
Moreover, we show that when the original set of features is used (i.e., id-features are included),
DREBIN’s most relevant features contain id-features.

7.3 Biases in machine learning-based malware detection
In ML-based Android malware detection, many factors can influence or bias the results reported
by the system, which makes its performance drop drastically when used in real world setting.
Researchers [4, 35] have identified sources of experimental bias and proposed constraints in order
to have a realistic evaluation. Tesseract’s authors [35] have used DREBIN and MaMaDroid [30]
classifiers to motivate their finding, and showed that their performance drops significantly when
evaluated with real world setting. They have also developed a framework that can be used to reveal
the realistic performance of malware classifiers and eliminate the spacial and temporal biases.
Malware researchers widely rely on cross-validation technique to evaluate the learning of the

classifiers. However, It has been shown that although the performance of the classifier seems to be
high when using this technique, the malware classifier performs poorly when used in real world
setting [3]. Similarly, another study [32] has demonstrated that using the most recent training
labels (e.g., the most recent reports from VirusTotal) that are in practice unavailable in real-world
situations can inflate the performance of malware detectors by around 20%. Thus, the authors
have introduced the temporal label consistency constraint that requires the training labels to be
temporally precedent to the evaluation samples.
Recently, researchers [6] have determined ten pitfalls that can introduce biases in the results

reported by machine learning-based computer and network security systems. These pitfalls are
related to dataset collection and labelling, system design and learning, performance assessment, and
deployment. After studying the presence of these pitfalls in 30 papers from top-tier security venues,
the authors have proposed a set of recommendations to develop sound machine learning-based
security systems.

8 CONCLUSION
We have presented an exploratory analysis of the DREBINmalware detector with the aim to uncover
insights about “how/why it works”. Our study has extensively investigated the discriminatory
power of the huge number of features that are used by DREBIN. We have thus identified DREBIN’s
most important features and showed that its discriminatory features contain id-features. We have
also proposed a set of experiments both to evaluate the consistency of the explanations provided
by DREBIN for malware samples of the same family, and to assess DREBIN’s ability to capture the
concept of malware families.

Overall:

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Deep Dive inside DREBIN 1:25

• DREBIN, given the stability of its performance across datasets, is a strong reference that re-
searchers should consider when assessing the performance of malware detection approaches.

• Id-features are predominant within the feature set of DREBIN. Their importance in the
decisions suggests that more research is needed into feature engineering that captures
maliciousness in a more abstract (hence generalised) way. In the meantime, researchers
should provide analysis on the presence of id-features and their impact on the reported
performance. Further research should also investigate techniques for exploring id-features
while mitigating their generalisation issues.

• The shortcomings of our first-step analyses suggest that the community needs further
research into the design of quality metrics for classifiers beyond classical quantitative metrics
of Precision and Recall.

Our work calls, thus, for more research into techniques and tools for analysing the performance
of malware detection approaches. While it is important to report high performance scores for state-
of-the-art classifiers, the literature should also provide a principle-based systematic assessment
into the inner-working of the approach.
Malware detection nowadays has become a critical concern that creates a challenge for man-

agers, developers and end-users. Having tools that can demonstrate that a malware detector has a
sound inner-working is thus paramount. Consequently, developing black-box systems with 100%
performance scores in the lab does not inspire confidence anymore. Instead, more attention should
be given to understanding how the systems work, and to what extent they are able to capture the
malicious character of the apps so they can be trusted and deployed in real-world settings. Our
work is an initial step for initiating a research roadmap into the assessment of malware detection
classifiers. We hope that this research direction will be embraced by the community.

9 ACKNOWLEDGEMENT
This work was partly supported (1) by the Luxembourg National Research Fund (FNR), under the
project CHARACTERIZE C17/IS/11693861, (2) by the SPARTA project, which has received funding
from the European Union’s Horizon 2020 research and innovation program under grant agreement
No 830892, (3) by the University of Luxembourg, under the internal project HitDroid and (4) by the
Luxembourg Ministry of Foreign and European Affairs through their Digital4Development (D4D)
portfolio under project LuxWAyS.

REFERENCES
[1] Z. Abaid, M. A. Kaafar, and S. Jha. 2017. Quantifying the impact of adversarial evasion attacks on machine learning

based android malware classifiers. In 2017 IEEE 16th International Symposium on Network Computing and Applications
(NCA). 1–10. https://doi.org/10.1109/NCA.2017.8171381

[2] Aisha Ali-Gombe, Irfan Ahmed, Golden G. Richard, and Vassil Roussev. 2016. AspectDroid: Android App Analysis
System. In Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy (New Orleans,
Louisiana, USA) (CODASPY ’16). Association for Computing Machinery, New York, NY, USA, 145–147. https://doi.
org/10.1145/2857705.2857739

[3] Kevin Allix, Tegawendé F. Bissyandé, Quentin Jérome, Jacques Klein, Radu State, and Yves Le Traon. 2016. Empirical
assessment of machine learning-based malware detectors for Android. Empirical Software Engineering 21, 1 (01 Feb
2016), 183–211. https://doi.org/10.1007/s10664-014-9352-6

[4] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2015. Are Your Training Datasets Yet Relevant?.
In Engineering Secure Software and Systems, Frank Piessens, Juan Caballero, and Nataliia Bielova (Eds.). Springer
International Publishing, Cham, 51–67. https://doi.org/10.1007/978-3-319-15618-7_5

[5] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2016. AndroZoo: Collecting Millions of
Android Apps for the Research Community. In Proceedings of the 13th International Conference on Mining Software
Repositories (Austin, Texas) (MSR ’16). ACM, New York, NY, USA, 468–471. https://doi.org/10.1145/2901739.2903508

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1109/NCA.2017.8171381
https://doi.org/10.1145/2857705.2857739
https://doi.org/10.1145/2857705.2857739
https://doi.org/10.1007/s10664-014-9352-6
https://doi.org/10.1007/978-3-319-15618-7_5
https://doi.org/10.1145/2901739.2903508

1:26 Nadia Daoudi, Kevin Allix, Tegawendé François Bissyandé, and Jacques Klein

[6] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio Pierazzi, Christian Wressnegger, Lorenzo
Cavallaro, and Konrad Rieck. 2020. Dos and Don’ts of Machine Learning in Computer Security. arXiv preprint
arXiv:2010.09470 (2020).

[7] Daniel Arp, Michael Spreitzenbarth, Malte Hübner, Hugo Gascon, and Konrad Rieck. 2014. Drebin: Efficient and
explainable detection of android malware in your pocket. In Proceedings of the ISOC Network and Distributed System
Security Symposium (NDSS), San Diego, CA.

[8] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer, and E. Bodden. 2015. Mining Apps for Abnormal
Usage of Sensitive Data. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1. 426–436.
https://doi.org/10.1109/ICSE.2015.61

[9] T. Chakraborty, F. Pierazzi, and V. S. Subrahmanian. 2020. EC2: Ensemble Clustering and Classification for Predicting
Android Malware Families. IEEE Transactions on Dependable and Secure Computing 17, 2 (2020), 262–277.

[10] Tieming Chen, Qingyu Mao, Yimin Yang, Mingqi Lv, and Jianming Zhu. 2018. TinyDroid: a lightweight and efficient
model for Android malware detection and classification. Mobile information systems 2018 (2018).

[11] Nadia Daoudi, Kevin Allix, Tegawendé F Bissyandé, and Jacques Klein. 2021. Lessons Learnt on Reproducibility in
Machine Learning Based Android Malware Detection. Empirical Software Engineering 26, 4 (2021), 1–53.

[12] Nadia Daoudi, Jordan Samhi, Abdoul Kader Kabore, Kevin Allix, Tegawendé F Bissyandé, and Jacques Klein. 2021.
DexRay: A Simple, yet Effective Deep Learning Approach to AndroidMalware Detection based on Image Representation
of Bytecode. In The 2nd International Workshop on Deployable Machine Learning for Security Defense (MLHat @KDD).

[13] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck, I. Corona, G. Giacinto, and F. Roli. 2019. Yes, Machine
Learning Can Be More Secure! A Case Study on Android Malware Detection. IEEE Transactions on Dependable and
Secure Computing 16, 4 (2019), 711–724.

[14] Yu Feng, Osbert Bastani, Ruben Martins, Isil Dillig, and Saswat Anand. 2016. Automated synthesis of semantic malware
signatures using maximum satisfiability. arXiv preprint arXiv:1608.06254 (2016).

[15] Joshua Garcia, Mahmoud Hammad, and Sam Malek. 2018. Lightweight, Obfuscation-Resilient Detection and Family
Identification of Android Malware. ACM Trans. Softw. Eng. Methodol. 26, 3, Article 11 (Jan. 2018), 29 pages. https:
//doi.org/10.1145/3162625

[16] Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck. 2013. Structural Detection of Android Malware
Using Embedded Call Graphs. In Proceedings of the 2013 ACM Workshop on Artificial Intelligence and Security (Berlin,
Germany) (AISec ’13). ACM, New York, NY, USA, 45–54. https://doi.org/10.1145/2517312.2517315

[17] Hugo Gonzalez, Natalia Stakhanova, and Ali A. Ghorbani. 2015. DroidKin: Lightweight Detection of Android Apps
Similarity. In International Conference on Security and Privacy in Communication Networks, Jing Tian, Jiwu Jing, and
Mudhakar Srivatsa (Eds.). Springer International Publishing, Cham, 436–453.

[18] Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and Patrick McDaniel. 2017. On the (statistical)
detection of adversarial examples. arXiv preprint arXiv:1702.06280 (2017).

[19] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and Patrick McDaniel. 2016. Adversarial
perturbations against deep neural networks for malware classification. arXiv preprint arXiv:1606.04435 (2016).

[20] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and Patrick McDaniel. 2017. Adversarial
Examples for Malware Detection. In Computer Security – ESORICS 2017, Simon N. Foley, Dieter Gollmann, and Einar
Snekkenes (Eds.). Springer International Publishing, Cham, 62–79.

[21] Paul Irolla and Alexandre Dey. 2018. The duplication issue within the drebin dataset. Journal of Computer Virology
and Hacking Techniques 14, 3 (2018), 245–249.

[22] Yu Jiang, Ruixuan Li, Junwei Tang, Ali Davanian, and Heng Yin. 2020. AOMDroid: Detecting Obfuscation Variants
of Android Malware Using Transfer Learning. In International Conference on Security and Privacy in Communication
Systems. Springer, 242–253.

[23] E. B. Karbab, M. Debbabi, S. Alrabaee, and D. Mouheb. 2016. DySign: dynamic fingerprinting for the automatic
detection of android malware. In 2016 11th International Conference on Malicious and Unwanted Software (MALWARE).
1–8.

[24] C. Li, K. Mills, D. Niu, R. Zhu, H. Zhang, and H. Kinawi. 2019. Android Malware Detection Based on Factorization
Machine. IEEE Access 7 (2019), 184008–184019. https://doi.org/10.1109/ACCESS.2019.2958927

[25] Deqiang Li, Qianmu Li, Yanfang Ye, and Shouhuai Xu. 2020. Enhancing deep neural networks against adversarial
malware examples. arXiv preprint arXiv:2004.07919 (2020).

[26] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an, and H. Ye. 2018. Significant Permission Identification for Machine-Learning-Based
Android Malware Detection. IEEE Transactions on Industrial Informatics 14, 7 (2018), 3216–3225.

[27] Shixia Liu, Xiting Wang, Mengchen Liu, and Jun Zhu. 2017. Towards better analysis of machine learning models: A
visual analytics perspective. Visual Informatics 1, 1 (2017), 48 – 56. https://doi.org/10.1016/j.visinf.2017.01.006

[28] Arvind Mahindru and Paramvir Singh. 2017. Dynamic Permissions Based Android Malware Detection Using Machine
Learning Techniques. In Proceedings of the 10th Innovations in Software Engineering Conference (Jaipur, India) (ISEC

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1109/ICSE.2015.61
https://doi.org/10.1145/3162625
https://doi.org/10.1145/3162625
https://doi.org/10.1145/2517312.2517315
https://doi.org/10.1109/ACCESS.2019.2958927
https://doi.org/10.1016/j.visinf.2017.01.006

A Deep Dive inside DREBIN 1:27

’17). Association for Computing Machinery, New York, NY, USA, 202–210. https://doi.org/10.1145/3021460.3021485
[29] Henry B Mann and Donald R Whitney. 1947. On a test of whether one of two random variables is stochastically larger

than the other. The annals of mathematical statistics (1947), 50–60.
[30] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristofaro, Gordon Ross, and Gianluca

Stringhini. 2017. MaMaDroid: Detecting Android Malware by Building Markov Chains of Behavioral Models. In ISOC
Network and Distributed Systems Security Symposiym (NDSS). San Diego, CA.

[31] L. Massarelli, L. Aniello, C. Ciccotelli, L. Querzoni, D. Ucci, and R. Baldoni. 2017. Android malware family classification
based on resource consumption over time. In 2017 12th International Conference on Malicious and Unwanted Software
(MALWARE). 31–38. https://doi.org/10.1109/MALWARE.2017.8323954

[32] Brad Miller, Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Rekha Bachwani, Riyaz Faizullabhoy, Ling Huang,
Vaishaal Shankar, Tony Wu, George Yiu, Anthony D. Joseph, and J. D. Tygar. 2016. Reviewer Integration and
Performance Measurement for Malware Detection. In Detection of Intrusions and Malware, and Vulnerability Assessment,
Juan Caballero, Urko Zurutuza, and Ricardo J. Rodríguez (Eds.). Springer International Publishing, Cham, 122–141.

[33] A. Narayanan, M. Chandramohan, L. Chen, and Y. Liu. 2017. Context-Aware, Adaptive, and Scalable Android Malware
Detection Through Online Learning. IEEE Transactions on Emerging Topics in Computational Intelligence 1, 3 (June
2017), 157–175. https://doi.org/10.1109/TETCI.2017.2699220

[34] A. Narayanan, L. Yang, L. Chen, and L. Jinliang. 2016. Adaptive and scalable Android malware detection through
online learning. In 2016 International Joint Conference on Neural Networks (IJCNN). 2484–2491.

[35] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and Lorenzo Cavallaro. 2019. TESSERACT:
Eliminating Experimental Bias in Malware Classification across Space and Time. In 28th USENIX Security Sympo-
sium (USENIX Security 19). USENIX Association, Santa Clara, CA, 729–746. https://www.usenix.org/conference/
usenixsecurity19/presentation/pendlebury

[36] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and Lorenzo Cavallaro. 2020. Intriguing properties of adversarial
ml attacks in the problem space. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 1332–1349.

[37] Sheikh Shah Mohammad Motiur Rahman and Sanjit Kumar Saha. 2018. StackDroid: evaluation of a multi-level
approach for detecting the malware on android using stacked generalization. In International Conference on Recent
Trends in Image Processing and Pattern Recognition. Springer, 611–623.

[38] C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich, V. Paxson, N. Pohlmann, H. Bos, and M. v. Steen. 2012. Prudent Practices
for Designing Malware Experiments: Status Quo and Outlook. In 2012 IEEE Symposium on Security and Privacy. 65–79.
https://doi.org/10.1109/SP.2012.14

[39] Sankardas Roy, Jordan DeLoach, Yuping Li, Nic Herndon, Doina Caragea, Xinming Ou, Venkatesh Prasad Ranganath,
Hongmin Li, and Nicolais Guevara. 2015. Experimental Study with Real-World Data for Android App Security Analysis
Using Machine Learning. In Proceedings of the 31st Annual Computer Security Applications Conference (Los Angeles,
CA, USA) (ACSAC 2015). Association for Computing Machinery, New York, NY, USA, 81–90. https://doi.org/10.1145/
2818000.2818038

[40] Marcos Sebastián, Richard Rivera, Platon Kotzias, and Juan Caballero. 2016. Avclass: A tool for massive malware
labeling. In International Symposium on Research in Attacks, Intrusions, and Defenses. Springer, 230–253.

[41] R. Sommer and V. Paxson. 2010. Outside the Closed World: On Using Machine Learning for Network Intrusion
Detection. In 2010 IEEE Symposium on Security and Privacy. 305–316.

[42] Kabakus Abdullah Talha, Dogru Ibrahim Alper, and Cetin Aydin. 2015. APK Auditor: Permission-based Android
malware detection system. Digital Investigation 13 (2015), 1–14.

[43] Florian Tramèr, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick McDaniel. 2017. The space of transferable
adversarial examples. arXiv preprint arXiv:1704.03453 (2017).

[44] Erik van der Kouwe, Gernot Heiser, Dennis Andriesse, Herbert Bos, and Cristiano Giuffrida. 2019. SoK: Benchmarking
Flaws in Systems Security. In IEEE European Symposium on Security and Privacy, EuroS&P 2019, Stockholm, Sweden,
June 17-19, 2019. IEEE, 310–325. https://doi.org/10.1109/EuroSP.2019.00031

[45] W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang. 2014. Exploring Permission-Induced Risk in Android
Applications for Malicious Application Detection. IEEE Transactions on Information Forensics and Security 9, 11 (2014),
1869–1882. https://doi.org/10.1109/TIFS.2014.2353996

[46] Frank Wilcoxon. 1945. Individual Comparisons by Ranking Methods. Biometrics 1, 6 (1945), 80–83.
[47] Y. Wu, X. Li, D. Zou, W. Yang, X. Zhang, and H. Jin. 2019. MalScan: Fast Market-Wide Mobile Malware Scanning by

Social-Network Centrality Analysis. In 2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). 139–150. https://doi.org/10.1109/ASE.2019.00023

[48] N. Xie, F. Zeng, X. Qin, Y. Zhang, M. Zhou, and C. Lv. 2018. RepassDroid: Automatic Detection of Android Malware
Based on Essential Permissions and Semantic Features of Sensitive APIs. In 2018 International Symposium on Theoretical
Aspects of Software Engineering (TASE). 52–59. https://doi.org/10.1109/TASE.2018.00015

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3021460.3021485
https://doi.org/10.1109/MALWARE.2017.8323954
https://doi.org/10.1109/TETCI.2017.2699220
https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury
https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury
https://doi.org/10.1109/SP.2012.14
https://doi.org/10.1145/2818000.2818038
https://doi.org/10.1145/2818000.2818038
https://doi.org/10.1109/EuroSP.2019.00031
https://doi.org/10.1109/TIFS.2014.2353996
https://doi.org/10.1109/ASE.2019.00023
https://doi.org/10.1109/TASE.2018.00015

1:28 Nadia Daoudi, Kevin Allix, Tegawendé François Bissyandé, and Jacques Klein

[49] Zhiwu Xu, Kerong Ren, Shengchao Qin, and Florin Craciun. 2018. CDGDroid: Android malware detection based on
deep learning using CFG and DFG. In International Conference on Formal Engineering Methods. Springer, 177–193.

[50] Z. XU, K. Ren, and F. Song. 2019. Android Malware Family Classification and Characterization Using CFG and DFG. In
2019 International Symposium on Theoretical Aspects of Software Engineering (TASE). 49–56. https://doi.org/10.1109/
TASE.2019.00-20

[51] Wei Yang, Deguang Kong, Tao Xie, and Carl A. Gunter. 2017. Malware Detection in Adversarial Settings: Exploiting
Feature Evolutions and Confusions in Android Apps. In Proceedings of the 33rd Annual Computer Security Applications
Conference (Orlando, FL, USA) (ACSAC 2017). Association for Computing Machinery, New York, NY, USA, 288–302.
https://doi.org/10.1145/3134600.3134642

[52] Zhenlong Yuan, Yongqiang Lu, Zhaoguo Wang, and Yibo Xue. 2014. Droid-Sec: Deep Learning in Android Malware
Detection. In Proceedings of the 2014 ACM Conference on SIGCOMM (Chicago, Illinois, USA) (SIGCOMM ’14). Association
for Computing Machinery, New York, NY, USA, 371–372. https://doi.org/10.1145/2619239.2631434

[53] M. Yusof, M. M. Saudi, and F. Ridzuan. 2017. A new mobile botnet classification based on permission and API calls. In
2017 Seventh International Conference on Emerging Security Technologies (EST). 122–127. https://doi.org/10.1109/EST.
2017.8090410

[54] Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. 2014. Semantics-Aware Android Malware Classification Using
Weighted Contextual API Dependency Graphs. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security (Scottsdale, Arizona, USA) (CCS ’14). Association for Computing Machinery, New York, NY,
USA, 1105–1116. https://doi.org/10.1145/2660267.2660359

[55] Y. Zhou and X. Jiang. 2012. Dissecting Android Malware: Characterization and Evolution. In 2012 IEEE Symposium on
Security and Privacy. 95–109. https://doi.org/10.1109/SP.2012.16

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1109/TASE.2019.00-20
https://doi.org/10.1109/TASE.2019.00-20
https://doi.org/10.1145/3134600.3134642
https://doi.org/10.1145/2619239.2631434
https://doi.org/10.1109/EST.2017.8090410
https://doi.org/10.1109/EST.2017.8090410
https://doi.org/10.1145/2660267.2660359
https://doi.org/10.1109/SP.2012.16

	Abstract
	1 Introduction
	1.1 Background on DREBIN

	2 Dataset and Statistical Analysis of DREBIN Features
	2.1 Dataset
	2.2 DREBIN Replication
	2.3 Statistical Analysis of the features

	3 Discriminatory power of DREBIN's Features
	3.1 What are the key features that enable the prediction?
	3.2 Are all the features needed to achieve similar results?

	4 Analysis of DREBIN classifier explanations
	4.1 An overview of malware families
	4.2 How informative are the explanations given by DREBIN?
	4.3 How consistent are the explanations given to samples of the same malware family?

	5 Assessment of DREBIN’s learning potential
	5.1 Does DREBIN capture the concept of malware family (within the family)?
	5.2 Does DREBIN capture the concept of malware family (across families)?

	6 Discussion
	6.1 Answering ``Why it works''
	6.2 Implications of our findings

	7 Related Work
	7.1 The impact of DREBIN
	7.2 Evaluation challenges
	7.3 Biases in machine learning-based malware detection

	8 Conclusion
	9 Acknowledgement
	References

