Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
DexRay: A Simple, yet Effective Deep Learning Approach to Android Malware Detection Based on Image Representation of Bytecode
DAOUDI, Nadia; SAMHI, Jordan; KABORE, Abdoul Kader et al.
2021In Communications in Computer and Information Science
Peer reviewed
 

Documents


Texte intégral
DexRay_MLHat.pdf
Preprint Auteur (651.35 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Android Security; Malware Detection; Deep Learning
Résumé :
[en] Computer vision has witnessed several advances in recent years, with unprecedented performance provided by deep representation learning research. Image formats thus appear attractive to other fields such as malware detection, where deep learning on images alleviates the need for comprehensively hand-crafted features generalising to different malware variants. We postulate that this research direction could become the next frontier in Android malware detection, and therefore requires a clear roadmap to ensure that new approaches indeed bring novel contributions. We contribute with a first building block by developing and assessing a baseline pipeline for image-based malware detection with straightforward steps. We propose DexRay, which converts the bytecode of the app DEX files into grey-scale “vector” images and feeds them to a 1-dimensional Convolutional Neural Network model. We view DexRay as foundational due to the exceedingly basic nature of the design choices, allowing to infer what could be a minimal performance that can be obtained with image-based learning in malware detection. The performance of DexRay evaluated on over 158k apps demonstrates that, while simple, our approach is effective with a high detection rate(F1-score= 0.96). Finally, we investigate the impact of time decay and image-resizing on the performance of DexRay and assess its resilience to obfuscation. This work-in-progress paper contributes to the domain of Deep Learning based Malware detection by providing a sound, simple, yet effective approach (with available artefacts) that can be the basis to scope the many profound questions that will need to be investigated to fully develop this domain.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
DAOUDI, Nadia ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
SAMHI, Jordan  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
KABORE, Abdoul Kader  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
ALLIX, Kevin ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
BISSYANDE, Tegawendé François D Assise  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
KLEIN, Jacques  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
DexRay: A Simple, yet Effective Deep Learning Approach to Android Malware Detection Based on Image Representation of Bytecode
Date de publication/diffusion :
2021
Nom de la manifestation :
The 2nd International Workshop on Deployable Machine Learning for Security Defense (MLHat)
Date de la manifestation :
15-08-2021
Titre de l'ouvrage principal :
Communications in Computer and Information Science
Maison d'édition :
Springer
Collection et n° de collection :
volume 1482
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Disponible sur ORBilu :
depuis le 03 décembre 2021

Statistiques


Nombre de vues
366 (dont 39 Unilu)
Nombre de téléchargements
128 (dont 20 Unilu)

citations Scopus®
 
54
citations Scopus®
sans auto-citations
44
OpenCitations
 
4
citations OpenAlex
 
2

Bibliographie


Publications similaires



Contacter ORBilu