Paper published in a book (Scientific congresses, symposiums and conference proceedings)
DexRay: A Simple, yet Effective Deep Learning Approach to Android Malware Detection Based on Image Representation of Bytecode
DAOUDI, Nadia; SAMHI, Jordan; KABORE, Abdoul Kader et al.
2021In Communications in Computer and Information Science
Peer reviewed
 

Files


Full Text
DexRay_MLHat.pdf
Author preprint (651.35 kB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Android Security; Malware Detection; Deep Learning
Abstract :
[en] Computer vision has witnessed several advances in recent years, with unprecedented performance provided by deep representation learning research. Image formats thus appear attractive to other fields such as malware detection, where deep learning on images alleviates the need for comprehensively hand-crafted features generalising to different malware variants. We postulate that this research direction could become the next frontier in Android malware detection, and therefore requires a clear roadmap to ensure that new approaches indeed bring novel contributions. We contribute with a first building block by developing and assessing a baseline pipeline for image-based malware detection with straightforward steps. We propose DexRay, which converts the bytecode of the app DEX files into grey-scale “vector” images and feeds them to a 1-dimensional Convolutional Neural Network model. We view DexRay as foundational due to the exceedingly basic nature of the design choices, allowing to infer what could be a minimal performance that can be obtained with image-based learning in malware detection. The performance of DexRay evaluated on over 158k apps demonstrates that, while simple, our approach is effective with a high detection rate(F1-score= 0.96). Finally, we investigate the impact of time decay and image-resizing on the performance of DexRay and assess its resilience to obfuscation. This work-in-progress paper contributes to the domain of Deep Learning based Malware detection by providing a sound, simple, yet effective approach (with available artefacts) that can be the basis to scope the many profound questions that will need to be investigated to fully develop this domain.
Disciplines :
Computer science
Author, co-author :
DAOUDI, Nadia ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
SAMHI, Jordan  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
KABORE, Abdoul Kader  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
ALLIX, Kevin ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
BISSYANDE, Tegawendé François D Assise  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
KLEIN, Jacques  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
External co-authors :
no
Language :
English
Title :
DexRay: A Simple, yet Effective Deep Learning Approach to Android Malware Detection Based on Image Representation of Bytecode
Publication date :
2021
Event name :
The 2nd International Workshop on Deployable Machine Learning for Security Defense (MLHat)
Event date :
15-08-2021
Main work title :
Communications in Computer and Information Science
Publisher :
Springer
Collection name :
volume 1482
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Available on ORBilu :
since 03 December 2021

Statistics


Number of views
239 (38 by Unilu)
Number of downloads
103 (19 by Unilu)

Scopus citations®
 
34
Scopus citations®
without self-citations
26
OpenCitations
 
4
OpenAlex citations
 
26

Bibliography


Similar publications



Contact ORBilu