Article (Scientific journals)
Trend-Aware Proactive Caching via Tensor Train Decomposition: A Bayesian Viewpoint
MEHRIZI RAHMAT ABADI, Sajad; X. Vu, Thang; CHATZINOTAS, Symeon et al.
2021In IEEE Open Journal of the Communications Society, (4369)
Peer Reviewed verified by ORBi
 

Files


Full Text
Trend-Aware_Proactive_Caching_via_Tensor_Train_Decomposition_A_Bayesian_Viewpoint.pdf
Publisher postprint (1.78 MB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Disciplines :
Electrical & electronics engineering
Author, co-author :
MEHRIZI RAHMAT ABADI, Sajad ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
X. Vu, Thang
CHATZINOTAS, Symeon  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
OTTERSTEN, Björn  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
External co-authors :
no
Language :
English
Title :
Trend-Aware Proactive Caching via Tensor Train Decomposition: A Bayesian Viewpoint
Publication date :
22 April 2021
Journal title :
IEEE Open Journal of the Communications Society
eISSN :
2644-125X
Publisher :
Luxembourg, New York, United States - New York
Issue :
4369
Peer reviewed :
Peer Reviewed verified by ORBi
FnR Project :
FNR11826975 - Online Learning For Edge-caching In Hybrid Satellite-terrestrial Networks, 2017 (01/09/2017-31/08/2021) - Sajad Mehrizi
Available on ORBilu :
since 03 October 2021

Statistics


Number of views
148 (8 by Unilu)
Number of downloads
59 (2 by Unilu)

Bibliography


Similar publications



Contact ORBilu