Doctoral thesis (Dissertations and theses)
TUMOUR-ASSOCIATED MICROGLIA/MACROPHAGE HETEROGENEITY IN GLIOBLASTOMA
PIRES AFONSO, Yolanda Sofia
2021
 

Files


Full Text
PhD thesis YPA_FINAL.pdf
Author preprint (42.89 MB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Tumour-associated microglia/macrophages; Glioblastoma; Immunometabolism; GBM progression
Abstract :
[en] Glioblastoma (GBM) is the most common and aggressive primary brain tumour in adults, characterized by high degrees of both inter- and intra-tumour heterogeneity. GBM cells secrete numerous factors promoting the recruitment and infiltration of cellular players to the local tumour microenvironment. Tumour-associated microglia/macrophages (TAMs) represent the major cell type of the stromal compartment in GBM playing important roles along tumour development. Along GBM progression, these cells are supposed to be geared towards a tumour-supportive phenotype, therefore TAMs are pursued as key targets for the development of novel strategies aimed at re-educating them towards anti-tumour phenotypes. However, it is yet unclear how these immune suppressive properties are acquired and whether TAM subsets may phenotypically and functionally differently contribute to tumour development. Hence, the main goal of the present PhD project was to elucidate TAM diversity under defined temporal and spatial settings in GBM. Taking advantage of the GBM GL261 syngeneic and patient-derived orthotopic xenograft mouse models, we comprehensively studied the cellular and transcriptional heterogeneity of TAMs by combining single-cell RNA-sequencing, multicolour flow cytometry, immunohistological and functional analyses. We demonstrated that, as observed in patients, the myeloid compartment is the most affected and heterogeneous stromal compartment, with microglia and macrophage-like cells acquiring key transcriptional differences and rapidly adapting along GBM progression. Specifically, we uncovered that TAM transcriptional programmes converge over time, suggesting a context-dependent symbiosis mechanism characterized by decreased antigen-presenting cell signatures at late tumour stages. In the absence of Acod1/Irg1, a key gene involved in the metabolic reprogramming of macrophages towards an anti-inflammatory phenotype, we detected higher TAM diversity in the TME displaying increased immunogenicity and correlating with increased lymphocytic recruitment to the tumour site. Additionally, we uncovered that TAMs exhibit niche-specific functional adaptations in the tumour microenvironment, with microglia in the invasive landscapes displaying higher immune reactive profiles when compared to the corresponding cells in the angiogenic tumour phenotypes. Taken together, our data provide insights into the spatial and molecular heterogeneity of TAMs dynamically adapting along tumour progression or across specific tumour sites and revealing potential reactive anti-tumorigenic cell subsets that may be harnessed for therapeutic intervention in GBM.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
PIRES AFONSO, Yolanda Sofia ;  University of Luxembourg > Faculty of Science, Technology and Medecine (FSTM) ; Luxembourg Institute of Health - LIH > Oncolgy
Language :
English
Title :
TUMOUR-ASSOCIATED MICROGLIA/MACROPHAGE HETEROGENEITY IN GLIOBLASTOMA
Defense date :
2021
Institution :
Unilu - University of Luxembourg, Luxembourg
Degree :
Docteur en Biologie
Focus Area :
Systems Biomedicine
FnR Project :
FNR10675146 - Training In Cancer Biology: Focus On Tumour Escape Mechanisms, 2015 (15/10/2016-14/04/2023) - Simone Niclou
Available on ORBilu :
since 11 September 2021

Statistics


Number of views
237 (35 by Unilu)
Number of downloads
34 (0 by Unilu)

Bibliography


Similar publications



Contact ORBilu