Pas de texte intégral
Communication poster (Colloques, congrès, conférences scientifiques et actes)
Model bias and its impact on computer-aided diagnosis: A data-centric approach
GARCIA SANTA CRUZ, Beatriz; BOSSA, Matias Nicolas; Sölter, Jan et al.
20212021 MLSS
 

Documents


Texte intégral
Aucun document disponible.

Envoyer vers



Détails



Mots-clés :
ML-Ops; model bias; Fairness in AI; Covid-19; applied-ML healthcare
Résumé :
[en] Machine learning and data-driven solutions open exciting opportunities in many disciplines including healthcare. The recent transition to this technology into real clinical settings brings new challenges. Such problems derive from several factors, including their dataset origin, composition and description, hampering their fairness and secure application. Considering the potential impact of incorrect predictions in applied-ML healthcare research is urgent. Undetected bias induced by inappropriate use of datasets and improper consideration of confounders prevents the translation of prediction models into clinical practice. Therefore, in this work, the use of available systematic tools to assess the risk of bias in models is employed as the first step to explore robust solutions for better dataset choice, dataset merge and design of the training and validation step during the ML development pipeline.
Centre de recherche :
Luxembourg Centre for Systems Biomedicine (LCSB)
Disciplines :
Sciences informatiques
Auteur, co-auteur :
GARCIA SANTA CRUZ, Beatriz ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
BOSSA, Matias Nicolas ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Interventional Neuroscience
Sölter, Jan ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Interventional Neuroscience
HUSCH, Andreas  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Interventional Neuroscience
HERTEL, Frank ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Model bias and its impact on computer-aided diagnosis: A data-centric approach
Date de publication/diffusion :
août 2021
Nom de la manifestation :
2021 MLSS
Organisateur de la manifestation :
University of Taiwan
Date de la manifestation :
from 2-08-2021 to 20-8-2021
Manifestation à portée :
International
Focus Area :
Systems Biomedicine
Computational Sciences
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 26 août 2021

Statistiques


Nombre de vues
293 (dont 30 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations OpenAlex
 
0

Bibliographie


Publications similaires



Contacter ORBilu