Thèse de doctorat (Mémoires et thèses)
Old and New Antiferroelectrics: Experimental Studies of Phase Transitions in Model Materials
MILESI-BRAULT, Cosme
2021
 

Documents


Texte intégral
CosmeMilesi-Brault_PhD_thesis_AFE_online_version.pdf
Preprint Auteur (13.77 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
antiferroelectric; antiferroelectricity; ferroelectric; antiferroic; ferroic; phase transition; Raman; inelastic scattering; sol-gel; chemical solution deposition; lead zirconate; PbZrO3; francisite; Cu3Bi(SeO3)2O2Cl
Résumé :
[en] Antiferroelectrics are a subcategory of ferroic materials that display no spontaneous polarisation due to antiparallel ionic displacements. These materials undergo an electric field-induced transition to a polar phase accompanied by the emergence of a spontaneous polarisation. As for ferroelectrics, heating up an antiferroelectric material above a certain temperature Tc will cause another phase transition towards a paraelectric phase. Antiferroelectricity is currently the subject of a renewed interest, mostly due to a rising need of new smart materials for applications such as energy storage, electrocaloric cooling or microelectronics. The most-studied antiferroelectric is lead zirconate PbZrO3perovskite. However, the understanding of its switching mechanism is still incomplete. In this work, we will first present our study on the sol-gel synthesis and characterisation of antiferroelectric polycrystalline thin films of canonical lead zirconate PbZrO3. We will notably highlight the realisation of an in-plane switching of our antiferroelectric samples grown on transparent substrates, as well as the optical observation of this switching through birefringence changes. On a more fundamental side, the oldest and best-known model of antiferroelectricity was defined by Kittel in 1951. No real unidimensional Kittel-like model material has, to our knowledge, been identified yet. We will detail our spectroscopic study of the lattice dynamics of francisite Cu3Bi(SeO3)2O2Cl which combines several inelastic scattering experiments. We will then discuss how this study proves that francisite is, to our knowledge, the best candidate of a material displaying a displacive antiferroelectric phase transition.
Centre de recherche :
LIST - Luxembourg Institute of Science & Technology
Disciplines :
Physique
Auteur, co-auteur :
MILESI-BRAULT, Cosme ;  University of Luxembourg > Faculty of Science, Technology and Medecine (FSTM) ; Luxembourg Institute of Science & Technology - LIST > Materials Research and Technology > Ferroic Materials for Transducers
Langue du document :
Anglais
Titre :
Old and New Antiferroelectrics: Experimental Studies of Phase Transitions in Model Materials
Date de soutenance :
08 juillet 2021
Institution :
Unilu - University of Luxembourg, Esch-sur-Alzette, Luxembourg
Intitulé du diplôme :
Docteur en Physique
Promoteur :
Président du jury :
Membre du jury :
DEFAY, Emmanuel 
Maglione, Mario
Buixaderas, Elena
Focus Area :
Physics and Materials Science
Projet FnR :
FNR11348912 - Bismuth-based Antiferroelectrics As Tunable Materials, 2016 (01/09/2017-31/12/2020) - Mael Guennou
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 26 août 2021

Statistiques


Nombre de vues
607 (dont 37 Unilu)
Nombre de téléchargements
318 (dont 19 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu