[en] We present a teacher professionalization project for promoting elementary school teachers’ diagnostic competencies in recognizing their students’ potential in STEM subjects. Teacher professionalization is fostered through the teachers’ personal involvement in the development of subjectspecific diagnostic materials as well as through continuing training on the fundamental knowledge needed to detect and support gifted students. On the basis of the Talent Development in Achievement Domains (TAD) framework, we reached a common working theory of talent and its
development in mathematics and science for elementary school-aged students based on the
available scientific evidence and approved by teachers. We share a multidimensional, dynamic
view of talent development that includes abilities, personality traits, and skills. We describe how our working theory and diagnostic materials can foster teachers’ diagnostic competencies as well as talent discovery and promotion in order to foster students’ development of creative productivity in STEM fields.
Disciplines :
Education & enseignement
Auteur, co-auteur :
KRISCHLER, Mireille ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Social Sciences (DSOC)
Mack, Elena
Gnas, Jessica
Breit, Moritz
Matthes, Julia
Preckel, Franzis
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
A research-practice cooperation to support elementary school teachers’ diagnostic competencies based on a working theory of talent development in STEM
Allen, K., Higgins, S., & Adams, J. (2019). The relationship between visuospatial working memory and mathematical performance in school-aged children: A systematic review. Educational Psychology Review, 31 (3), 509–531. https://doi.org/10.1007/s10648-019-09470-8
Bandura, A. (2010). Self-efficacy. In The Corsini Encyclopedia of Psychology (4th Ed. pp. 1534–1536). Hoboken, New Jersey: John Wiley & Sons
Bates, C., & Nettelbeck, T. (2001). Primary school teachers’ judgements of reading achievement. Educational Psychology, 21 (2), 177–187. https://doi.org/10.1080/01443410020043878
Baumert, J., & Kunter, M. (2013). The COACTIV model of teachers’ professional competence. In M. Kunter, M. Baumert, J. Blum, W. Klusmann, U. Krauss, & S. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers (pp. 25–48). Springer US. https://doi.org/10.1007/978-1-4614-5149-5
Baumert, J., & Kunter, M. (2006). Stichwort: Professionelle Kompetenz von Lehrkräften. Zeitschrift Für Erziehungswissenschaft, 9 (4), 469–520. https://doi.org/10.1007/s11618-006-0165-2
Beghetto, R. A. (2016). Creative openings in the social interactions of teaching. Creativity. Theories–Research - Applications, 3 (2), 261–273. https://doi.org/10.1515/ctra-2016-0017
Berch, D. B. (2005). Making sense of number sense: Implications for children with mathematical disabilities. Journal of Learning Disabilities, 38 (4), 333–339. https://doi.org/10.1177/00222194050380040901
Bryk, A. S. (2015). 2014 AERA Distinguished Lecture. Educational Researcher, 44 (9), 467–477. https://doi.org/10.3102/0013189X15621543
Burns, J. C., Cooke, D. Y., & Schweider, C. (2011). A short guide to community based participatory action research: A community research lab guide. https://ktpathways.ca/resources/short-guide-community-based-participatory-action-research
Deci, E. L., & Ryan, R. M. (1985). Conceptualizations of intrinsic motivation and self-determination. In Intrinsic motivation and self-determination in human behavior. Perspectives in Social Psychology. (pp. 11–40). Springer US. https://doi.org/10.1007/978-1-4899-2271-7_2
Dicke, A.-L., Lüdtke, O., Trautwein, U., Nagy, G., & Nagy, N. (2012). Judging students’ achievement goal orientations: Are teacher ratings accurate? Learning and Individual Differences, 22 (6), 844–849. https://doi.org/10.1016/j.lindif.2012.04.004
Elliot, A. J. (1999). Approach and avoidance motivation and achievement goals. Educational Psychologist, 34 (3), 169–189. https://doi.org/10.1207/s15326985ep3403_3
Freund, P. A., & Holling, H. (2008). Creativity in the classroom: A multilevel analysis investigating the impact of creativity and reasoning ability on GPA. Creativity Research Journal, 20 (3), 309–318. https://doi.org/10.1080/10400410802278776
Gajda, A., Karwowski, M., & Beghetto, R. A. (2017). Creativity and academic achievement: A meta-analysis. Journal of Educational Psychology, 109 (2), 269–299. https://doi.org/10.1037/edu0000133
Geary, D. C. (2013). Early foundations for mathematics learning and their relations to learning disabilities. Current Directions in Psychological Science, 22 (1), 23–27. https://doi.org/10.1177/0963721412469398
Hadzigeorgiou, Y., Fokialis, P., & Kabouropoulou, M. (2012). Thinking about creativity in science education. Creative Education, 3 (5), 603–611. https://doi.org/10.4236/ce.2012.35089
Hannula, M. M., & Lehtinen, E. (2005). Spontaneous focusing on numerosity and mathematical skills of young children. Learning and Instruction, 15 (3), 237–256. https://doi.org/10.1016/j.learninstruc.2005.04.005
Hanses, P., & Rost, D. H. (1998). Das “Drama” der hochbegabten Underachiever. “Gewöhnliche” oder “außergewöhnliche” Underachiever? Zeitschrift Für Pädagogische Psychologie, 12, 53–71.
Hertzog, N. B. (1998). Open-ended activities: Differentiation through learner responses. Gifted Child Quarterly, 42 (4), 212–227. https://doi.org/10.1177/001698629804200405
Huang, C. (2011). Self-concept and academic achievement: A meta-analysis of longitudinal relations. Journal of School Psychology, 49 (5), 505–528. https://doi.org/10.1016/j.jsp.2011.07.001
Hunt, J. M. V. (1965). Intrinsic motivation and its role in psychological development. In D. Levine (Ed.), Nebraska symposium on motivation (Vol. 13, pp. 189–282). University of Nebraska Press.
Jussim, L., & Harber, K. D. (2005). Teacher expectations and self-fulfilling prophecies: Knowns and unknowns, resolved and unresolved controversies. Personality and Social Psychology Review: An Official Journal of the Society for Personality and Social Psychology, Inc, 9 (2), 131–155. https://doi.org/10.1207/s15327957pspr0902_3
Knopfelmacher, S., & Kronborg, L. (2003). Characteristics, competencies and classroom strategies of effective teachers of gifted and talented students. In L. Kronborg & S. Knopfelmacher (Eds.), Proceedings from the 9th National Conference of the Australian Association for the Education of Gifted and Talented Students, Sydney, 2002, CD Rom (pp. 91–104). Melbourne: AAEGT
Krajcik, J.S. & Blumenfeld, P. (2006). Project-based learning. In Sawyer, R. K. (Ed.), the Cambridge handbook of the learning sciences. New York: Cambridge. https://doi.org/10.1017/CBO9780511816833. 020
Krampen, G. (2019). Psychologie der Kreativität: Divergentes Denken und Handeln in Forschung und Praxis (1. Auflage). Hogrefe.
Kronborg, L., & Plunkett, M. (2013). Responding to professional learning: How effective teachers differentiate teaching and learning strategies to engage highly able adolescents. Australasian Journal of Gifted Education, 22 (2), 52–63.
Krutetskii, V. A. (1976). The psychology of mathematical abilities in schoolchildren. Chicago: The University of Chicago Press
Lei, H., Cui, Y., & Zhou, W. (2018). Relationships between student engagement and academic achievement: A meta-analysis. Social Behavior and Personality: An International Journal, 46 (3), 517–528. https://doi.org/10.2224/sbp.7054
Leikin, R., & Lev, M. (2007). Multiple solution tasks as a magnifying glass for observation of mathematical creativity. In J. H. Woo, H. C. Lew, K. S. Park, & D. Y. Seo (Eds.), Proceedings of the 31st international conference for the psychology of mathematics education (Vol. 3, pp. 161–168). The Korea Society of Education Studies in Mathematics.
Leikin, R., & Pitta-Pantazi, D. (2013). Creativity and mathematics education: The state of the art. ZDM Mathematics Education, 45 (2), 159–166. https://doi.org/10.1007/s11858-012-0459-1
Li, J., Ye, H., Tang, Y., Zhou, Z., & Hu, X. (2018). What are the effects of self-regulation phases and strategies for Chinese students? A meta-analysis of two decades research of the association between self-regulation and academic performance. Frontiers in Psychology, 9. https://doi.org/10.3389/fpsyg.2018.02434
Lubinski, D., & Benbow, C. P. (2006). Study of mathematically precocious youth after 35 years: Uncovering antecedents for the development of math-science expertise. Perspectives on Psychological Science, 1 (4), 316–345. https://doi.org/10.1111/j.1745-6916.2006.00019.x
Machts, N., Kaiser, J., Schmidt, F. T. C., & Möller, J. (2016). Accuracy of teachers’ judgments of students’ cognitive abilities: A meta-analysis. Educational Research Review, 19, 85–103. https://doi.org/10.1016/j.edurev.2016.06.003
Mack, E., Breit, M., Krischler, M., Gnas, J., & Preckel, F. (2021). Talent development in natural science in elementary school: A juxtaposition of research and practice. Teaching and Teacher Education, 104, 103366. https://doi.org/10.1016/j.tate.2021.103366
Maker, C. J., & Schiever, S. W. (2010). Curriculum development and teaching strategies for gifted learners. Austin.
Maresch, G. (2018). Development of spatial ability: Results from the research project geodiKon. In P. Herbst, U. H. Cheah, P. R. Richard, & K. Jones (Eds.), International perspectives on the teaching and learning of geometry in secondary schools (pp. 215–230). Springer.
Mayer, D., Sodian, B., Koerber, S., & Schwippert, K. (2014). Scientific reasoning in elementary school children: Assessment and relations with cognitive abilities. Learning and Instruction, 29, 43–55. https://doi.org/10.1016/j.learninstruc.2013.07.005
McElvany, N., Schroeder, S., Baumert, J., Schnotz, W., Horz, H., & Ullrich, M. (2012). Cognitively demanding learning materials with texts and instructional pictures: Teachers’ diagnostic skills, pedagogical beliefs and motivation. European Journal of Psychology of Education, 27 (3), 403–420. https://doi.org/10.1007/s10212-011-0078-1
McMullen, J., Hannula-Sormunen, M. M., & Lehtinen, E. (2017). Spontaneous focusing on quantitative relations as a predictor of rational number and algebra knowledge. Contemporary Educational Psychology, 51, 356–365. https://doi.org/10.1016/j.cedpsych.2017.09.007
Myers, T., Carey, E., & Szűcs, D. (2017). Cognitive and neural correlates of mathematical giftedness in adults and children: A review. Frontiers in Psychology, 8, 1646. https://doi.org/10.3389/fpsyg.2017. 01646
Neisser, U., Boodoo, G., Bouchard, T. J., Boykin, A. W., Brody, N., Ceci, S. J., Halpern, D. F., Loehlin, J. C., Perloff, R., Sternberg, R. J., & Urbina, S. (1996). Intelligence: Knowns and unknowns. American Psychologist, 51 (2), 77–101. https://doi.org/10.1037/0003-066X.51.2.77
Nickerson, R. S. (1999). Enhancing creativity. In R. J. Sternberg (Ed.), Handbook of creativity (pp. 392–430). Cambridge University Press
Olszewski-Kubilius, P., Subotnik, R. F., & Worrell, F. C. (2016). Aiming talent development toward creative eminence in the 21st Century. Roeper Review, 38 (3), 140–152. https://doi.org/10.1080/02783193.2016.1184497
Pellegrino, J. W. (2014). Assessment as a positive influence on 21st century teaching and learning: A systems approach to progress. Psicología Educativa, 20 (2), 65–77. https://doi.org/10.1016/j.pse.2014.11.002
Pierce, R. L., & Adams, C. M. (2004). Tierdless lessons: One way to differentiate mathematics instruction. Gifted Child Today, 27 (2), 58–65. https://doi.org/10.4219/gct-2004-133
Poropat, A. E. (2014). A meta-analysis of adult-rated child personality and academic performance in primary education. British Journal of Educational Psychology, 84 (2), 239–252. https://doi.org/10.1111/bjep.12019
Preckel, F., Golle, J., Grabner, R., Jarvin, L., Kozbelt, A., Müllensiefen, D., Olszewski-Kubilius, P., Schneider, W., Subotnik, R., Vock, M., & Worrell, F. C. (2020). Talent development in achievement domains: A psychological framework for within- and cross-domain research. Perspectives on Psychological Science, 15 (3), 691–722. https://doi.org/10.1177/1745691619895030
Putwain, D. W., Symes, W., Nicholson, L. J., & Becker, S. (2018). Achievement goals, behavioural engagement, and mathematics achievement: A mediational analysis. Learning and Individual Differences, 68, 12–19. https://doi.org/10.1016/j.lindif.2018.09.006
Rathé, S., Torbeyns, J., Hannula-Sormunen, M. M., De Smedt, B., & Verschaffe, L. (2016). Spontaneous focusing on numerosity: A review of recent research. Mediterranean Journal for Research in Mathematics Education, 15, 1–25.
Renzulli, J. S. (1978). What makes giftedness? Re-examining a definition. Phi Delta Kappan, 60, 180–184, 261
Robson, D. A., Allen, M. S., & Howard, S. J. (2020). Self-regulation in childhood as a predictor of future outcomes: A meta-analytic review. Psychological Bulletin, 146 (4), 324–354. https://doi.org/10.1037/bul0000227
Roth, B., Becker, N., Romeyke, S., Schäfer, S., Domnick, F., & Spinath, F. M. (2015). Intelligence and school grades: A meta-analysis. Intelligence, 53, 118–137. https://doi.org/10.1016/j.intell.2015.09.002
Runco, M. A., Millar, G., Acar, S., & Cramond, B. (2010). Torrance tests of creative thinking as predictors of personal and public achievement: A fifty-year follow-up. Creativity Research Journal, 22 (4), 361–368. https://doi.org/10.1080/10400419.2010.523393
Schrader, F.-W., & Helmke, A. (1987). Diagnostische Kompetenz von Lehrern: Komponenten und Wirkungen. Empirische Pädagogik, 1 (1), 27–52.
Schacter, J., Thum, Y. M., & Zifkin, D. (2006). How Much does creative teaching enhance elementary school students’ achievement? The Journal of Creative Behavior, 40 (1), 47–72. https://doi.org/10.1002/j.2162-6057.2006.tb01266.x
Scherrer, V., Preckel, F., Schmidt, I., & Elliot, A. J. (2020). Development of achievement goals and their relation to academic interest and achievement in adolescence: A review of the literature and two longitudinal studies. Developmental Psychology, 56 (4), 795–814. https://doi.org/10.1037/dev0000898
Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., & De Smedt, B. (2017). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, 20 (3), e12372. https://doi.org/10.1111/desc.12372
Schneider, W. J., & McGrew, K. S. (2012). The Cattell-Horn-Carroll model of intelligence. In D. Flanagan & P. Harrison (Eds.), Contemporary intellectual assessment: Theories, tests, and issues (3rd ed., pp. 99–144). Guilford.
Schrader, J., Hasselhorn, M., Hetfleisch, P., & Goeze, A. (2020). Stichwortbeitrag Implementationsforschung: Wie Wissenschaft zu Verbesserungen im Bildungssystem beitragen kann. Zeitschrift Für Erziehungswissenschaft, 23 (1), 9–59. https://doi.org/10.1007/s11618-020-00927-z
Shulman, L. S., & Sherin, M. G. (2004). Fostering communities of teachers as learners: Disciplinary perspectives. Journal of Curriculum Studies, 36 (2), 135–140. https://doi.org/10.1080/0022027032000135049
Siegle, D., & Powell, T. (2004). Exploring teacher biases when nominating students for gifted programs. Gifted Child Quarterly, 48 (1), 21–29. https://doi.org/10.1177/001698620404800103
Singer, V., & Strasser, K. (2017). The association between arithmetic and reading performance in school: A meta-analytic study. School Psychology Quarterly, 32 (4), 435–448. https://doi.org/10.1037/spq0000197
Spinath, B. (2005). Akkuratheit der Einschätzung von Schülermerkmalen durch Lehrer und das Konstrukt der diagnostischen Kompetenz. Zeitschrift Für Pädagogische Psychologie, 19 (1/2), 85–95. https://doi.org/10.1024/1010-0652.19.12.85
Sternberg, R. J. (1999). A propulsion model of types of creative contributions. Review of General Psychology, 3 (2), 83–100. https://doi.org/10.1037/1089-2680.3.2.83
Subotnik, R. F., Olszewski-Kubilius, P., & Worrell, F. C. (2018). The relationship between expertise and giftedness: A talent development perspective. In D. Z. Hambrick, G. Campitelli, & B. N. Macnamara (Eds.), (pp. 427–434) The science of expertise: Behavioral, neural, and genetic approaches to complex skill. Routledge.
Subotnik, R. F., Olszewski-Kubilius, P., & Worrell, F. C. (2011). Rethinking giftedness and gifted education. Psychological Science in the Public Interest, 12 (1), 3–54. https://doi.org/10.1177/1529100611418056
Südkamp, A., Kaiser, J., & Möller, J. (2012). Accuracy of teachers’ judgments of students’ academic achievement: A meta-analysis. Journal of Educational Psychology, 104, 743–762
Sullivan, P. (2011). Teaching mathematics: Using research-informed strategies. Australian education review: no. 59. Camberwell, Vic.: Australian Council for Educational Research
Sullivan, P., Warren, E., & White, P. (2000). Students’ responses to content specific open-ended mathematical tasks. Mathematics Education Research Journal, 12 (1), 2–17. https://doi.org/10.1007/BF03217071
Taylor, G., Jungert, T., Mageau, G. A., Schattke, K., Dedic, H., Rosenfield, S., & Koestner, R. (2014). A self-determination theory approach to predicting school achievement over time: The unique role of intrinsic motivation. Contemporary Educational Psychology, 39 (4), 342–358. https://doi.org/10.1016/j.cedpsych.2014.08.002
The Design-Based Research Collective. (2003). Design-based research: An emerging paradigm for educational inquiry. Educational Researcher, 32 (1), 5–8. https://doi.org/10.3102/0013189X032001005
Thurstone, L. L. (1964). Theories of intelligence. The Scientific Monthly, 62 (2), 101–112.
Torrance, E. P. (1972). Career patterns and peak creative achievements of creative high school students twelve years later. Gifted Child Quarterly, 16 (2), 75–88. https://doi.org/10.1177/001698627201600201
van Ophuysen, S. (2010). Professionelle pädagogisch-diagnostische Kompetenz–Eine theoretische und empirische Annäherung [Professional pedagogical-diagnostic competence–A theoretical and empirical approach]. In W. Bos, H. G. Holtappels, H. Pfeiffer, H.-G. Rolff, & R. Schulz-Zander (Eds.), Jahrbuch der Schulentwicklung. Daten, Beispiele und Perspektiven (pp. 203–243). Juventa.
Vincent-Lancrin, S., González-Sancho, C., Bouckaert, M., de Luca, F., Fernández-Barrerra, M., Jacotin, G., Urgel, J., & Vidal, Q. (2019). Fostering students’ creativity and critical thinking. OECD Publishing. https://doi.org/10.1787/62212c37-en
von Stumm, S., Chamorro-Premuzic, T., & Ackerman, P. L. (2011). Re-visiting intelligence-personality associations: Vindicating intellectual investment. In T. Chamorro-Premuzic, S. von Stumm, & A. Furnham (Eds.), Handbook of individual differences (pp. 217–241). Wiley-Blackwell. https://doi.org/10.1002/9781444343120
Wang, S., Rubie-Davies, C. M., & Meissel, K. (2018). A systematic review of the teacher expectation literature over the past 30 years. Educational Research and Evaluation, 24 (3–5), 124–179. https://doi.org/10.1080/13803611.2018.1548798
Weinert, F. E., Schrader, F.-W., & Helmke, A. (1990). Educational Expertise: Closing the gap between educational research and classroom practice. School Psychology International, 11 (3), 163–180. https://doi.org/10.1177/0143034390113002
Westphal, A. (2016). Diagnostische Kompetenzen von Lehrkräften. Urteilstendenzen, Zusammenhänge mit dem Unterrichtshandeln und Entscheidungen zum Klassenüberspringen. Universität Potsdam.
Yuan, K., Steedle, J., Shavelson, R., Alonzo, A., & Oppezzo, M. (2006). Working memory, fluid intelligence, and science learning. Educational Research Review, 1 (2), 83–98. https://doi.org/10.1016/j.edurev.2006.08.005
Yurkofsky, M. M., Peterson, A. J., Mehta, J. D., Horwitz-Willis, R., & Frumin, K. M. (2020). Research on Continuous Improvement: Exploring the Complexities of Managing Educational Change. Review of Research in Education, 44 (1), 403–433. https://doi.org/10.3102/0091732X20907363
Ziegler, A. (2005). The actiotope model of giftedness. In R. J. Sternberg & J. E. Davidson (Eds.), Conceptions of giftedness (2nd ed., pp. 411–436). Cambridge University Press.
Zimmerman, C. (2007). The development of scientific thinking skills in elementary and middle school. Developmental Review, 27 (2), 172–223. https://doi.org/10.1016/j.dr.2006.12.001