Article (Périodiques scientifiques)
Mutation Analysis for Cyber-Physical Systems: Scalable Solutions and Results in the Space Domain
CORNEJO OLIVARES, Oscar Eduardo; PASTORE, Fabrizio; BRIAND, Lionel
2022In IEEE Transactions on Software Engineering, 48 (10), p. 3913–3939
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Cornejo-MutationAnalysis-TSE.pdf
Postprint Auteur (2.17 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
mutation testing; space software; embedded software; cyber-physical systems
Résumé :
[en] On-board embedded software developed for spaceflight systems (space software) must adhere to stringent software quality assurance procedures. For example, verification and validation activities are typically performed and assessed by third party organizations. To further minimize the risk of human mistakes, space agencies, such as the European Space Agency (ESA), are looking for automated solutions for the assessment of software testing activities, which play a crucial role in this context. Though space software is our focus here, it should be noted that such software shares the above considerations, to a large extent, with embedded software in many other types of cyber-physical systems. Over the years, mutation analysis has shown to be a promising solution for the automated assessment of test suites; it consists of measuring the quality of a test suite in terms of the percentage of injected faults leading to a test failure. A number of optimization techniques, addressing scalability and accuracy problems, have been proposed to facilitate the industrial adoption of mutation analysis. However, to date, two major problems prevent space agencies from enforcing mutation analysis in space software development. First, there is uncertainty regarding the feasibility of applying mutation analysis optimization techniques in their context. Second, most of the existing techniques either can break the real-time requirements common in embedded software or cannot be applied when the software is tested in Software Validation Facilities, including CPU emulators and sensor simulators. In this paper, we enhance mutation analysis optimization techniques to enable their applicability to embedded software and propose a pipeline that successfully integrates them to address scalability and accuracy issues in this context, as described above. Further, we report on the largest study involving embedded software systems in the mutation analysis literature. Our research is part of a research project funded by ESA ESTEC involving private companies (GomSpace Luxembourg and LuxSpace) in the space sector. These industry partners provided the case studies reported in this paper; they include an on-board software system managing a microsatellite currently on-orbit, a set of libraries used in deployed cubesats, and a mathematical library certified by ESA.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Software Verification and Validation Lab (SVV Lab)
Disciplines :
Sciences informatiques
Auteur, co-auteur :
CORNEJO OLIVARES, Oscar Eduardo ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
PASTORE, Fabrizio  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
BRIAND, Lionel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Mutation Analysis for Cyber-Physical Systems: Scalable Solutions and Results in the Space Domain
Date de publication/diffusion :
octobre 2022
Titre du périodique :
IEEE Transactions on Software Engineering
ISSN :
0098-5589
eISSN :
1939-3520
Maison d'édition :
Institute of Electrical and Electronics Engineers, New-York, Etats-Unis - New York
Volume/Tome :
48
Fascicule/Saison :
10
Pagination :
3913–3939
Peer reviewed :
Peer reviewed vérifié par ORBi
URL complémentaire :
Projet européen :
H2020 - 694277 - TUNE - Testing the Untestable: Model Testing of Complex Software-Intensive Systems
Intitulé du projet de recherche :
Fault-based, Automated Quality Assurance Assessment and Augmentation for Space Software
Organisme subsidiant :
ASE - Agence Spatiale Européenne
CER - Conseil Européen de la Recherche
NSERC Discovery
CE - Commission Européenne
European Union
Disponible sur ORBilu :
depuis le 23 août 2021

Statistiques


Nombre de vues
785 (dont 68 Unilu)
Nombre de téléchargements
451 (dont 20 Unilu)

citations Scopus®
 
9
citations Scopus®
sans auto-citations
3
citations OpenAlex
 
2
citations WoS
 
9

Bibliographie


Publications similaires



Contacter ORBilu