Network management; anomaly detection carlos.vega@naudit.es javier.aracil@naudit.es eduardo.magana@naudit.es MINECO [TEC2015-69417] The authors would like to thank MINECO; received through grant TEC2015-69417 (TRAFICA) 22 0 0 0 BL7GB ISI:000454983700019
Résumé :
[en] Current networks are increasingly growing in size, complexity and the amount of monitoring data that they produce, which requires complex data analysis pipelines to handle data collection, centralization and analysis tasks. Literature approaches, include the use of custom agents to harvest information and large data centralization systems based on clusters to achieve horizontal scalability, which are expensive and difficult to deploy in real scenarios. In this paper we propose and evaluate a series of methodologies, deployed in real industrial production environments, for network management, from the architecture design to the visualization system as well as for the anomaly detection methodologies, that intend to squeeze the vertical resources and overcome the difficulties of data collection and centralization.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
VEGA MORENO, Carlos Gonzalo ; Universidad Autonoma de Madrid > Escuela Politecnica Superior, Departamento de Tecnología Electrónica y de las Comunicaciones ; Naudit HPCN
Aracil, Javier; Universidad Autónoma de Madrid > Escuela Politécnica Superior, Departamento de Tecnología Electrónica y de las Comunicaciones ; Naudit HPCN
Magaña, Eduardo
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
KISS Methodologies for Network Management and Anomaly Detection
Date de publication/diffusion :
2018
Nom de la manifestation :
2018 26th International Conference on Software, Telecommunications and Computer Networks (SoftCOM)
Organisateur de la manifestation :
University of Split, FESB and Croatian Communications and Information Society (CCIS)
Lieu de la manifestation :
Split, Croatie
Date de la manifestation :
from 13-09-2018 to 15-09-2018
Manifestation à portée :
International
Titre de l'ouvrage principal :
KISS Methodologies for Network Management and Anomaly Detection
Auteur, co-auteur :
Vega Moreno, Carlos Gonzalo
Aracil, Javier
Magaña, Eduardo
Maison d'édition :
IEEE
ISBN/EAN :
978-9-5329-0087-3
Pagination :
99-104
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Commentaire :
26th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), CROATIA, SEP 13-15, 2018
Proceedings Paper