[en] In this paper, we address the problem of multiantenna spectrum sensing in Cognitive Radios (CRs) by considering the correlation between the received channels at different antennas. First, we derive the optimum genie-aided detector which assumes perfect knowledge of the antenna correlation coefficients, Primary User (PU) signal power and noise variance. This is used as a benchmark for comparing with more practical detectors when some or all of these parameters are unknown to the Secondary User (SU). Two scenarios are considered: 1) the antenna correlation coefficients and PU signal power are unknown to the SU; 2) the antenna correlation coefficients, PU signal power and noise variance are unknown to the SU. To derive sub-optimum detectors for these two scenarios, we apply the Rao test, an asymptotically equivalent test to the Generalized Likelihood Ratio Test (GLRT) that does not require the Maximum Likelihood (ML) estimates of unknown parameters. Additionally, we calculate analytical approximations to the detection and false-alarm probabilities of the proposed detectors and verify them with Monte-Carlo simulations. The simulation results show that these new detectors outperform several recently proposed detectors for CR using multiple antennas.
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
SEDIGHI, Saeid ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Taherpour, Abbas
Sala, Josep
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Spectrum sensing using correlated receiving multiple antennas in cognitive radios
Date de publication/diffusion :
2013
Titre du périodique :
IEEE Transactions on Wireless Communications
ISSN :
1536-1276
eISSN :
1558-2248
Maison d'édition :
Institute of Electrical and Electronics Engineers, New York, Etats-Unis - New York