Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
An efficient deep learning approach for ground point filtering in aerial laser scanning point clouds
NURUNNABI, Abdul Awal Md; TEFERLE, Felix Norman; Li, Jonathan et al.
2021In NURUNNABI, Abdul Awal Md; TEFERLE, Felix Norman; Li, Jonathan et al. (Eds.) An efficient deep learning approach for ground point filtering in aerial laser scanning point clouds
Peer reviewed
 

Documents


Texte intégral
aN et al_an efficient dL_isprs-archives-XLIII-B1-2021-31-2021.pdf
Postprint Éditeur (1.27 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
: Classification; CNN; Feature Extraction; LiDAR; Local Feature; Neural Network; PointNet; Semantic Analysis
Résumé :
[en] Ground surface extraction is one of the classic tasks in airborne laser scanning (ALS) point cloud processing that is used for three-dimensional (3D) city modelling, infrastructure health monitoring, and disaster management. Many methods have been developed over the last three decades. Recently, Deep Learning (DL) has become the most dominant technique for 3D point cloud classification. DL methods used for classification can be categorized into end-to-end and non end-to-end approaches. One of the main challenges of using supervised DL approaches is getting a sufficient amount of training data. The main advantage of using a supervised non end-to-end approach is that it requires less training data. This paper introduces a novel local feature-based non end-to-end DL algorithm that generates a binary classifier for ground point filtering. It studies feature relevance, and investigates three models that are different combinations of features. This method is free from the limitations of point clouds’ irregular data structure and varying data density, which is the biggest challenge for using the elegant convolutional neural network. The new algorithm does not require transforming data into regular 3D voxel grids or any rasterization. The performance of the new method has been demonstrated through two ALS datasets covering urban environments. The method successfully labels ground and non-ground points in the presence of steep slopes and height discontinuity in the terrain. Experiments in this paper show that the algorithm achieves around 97% in both F1-score and model accuracy for ground point labelling.
Centre de recherche :
Department of Geodesy and Geospatial Engineering
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
NURUNNABI, Abdul Awal Md ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
TEFERLE, Felix Norman  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Li, Jonathan;  University of Waterloo, Canada > Geography and Environmental Management
Lindenbergh, Roderik;  Delft University of Technology > Geosciences and Remote Sensing, Faculty of Civil Engineering and Geosciences
HUNEGNAW, Addisu  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
An efficient deep learning approach for ground point filtering in aerial laser scanning point clouds
Titre original :
[en] An efficient deep learning approach for ground point filtering in aerial laser scanning point clouds
Date de publication/diffusion :
02 juillet 2021
Nom de la manifestation :
ISPRS Congress, 2021
Organisateur de la manifestation :
International Society of Photogrammetry and Remote Sensing (ISPRS)
Lieu de la manifestation :
Nice, France
Date de la manifestation :
5-9 July, 2021
Manifestation à portée :
International
Titre de l'ouvrage principal :
An efficient deep learning approach for ground point filtering in aerial laser scanning point clouds
Auteur, co-auteur :
Maison d'édition :
ISPRS
Pagination :
31-38
Peer reviewed :
Peer reviewed
Intitulé du projet de recherche :
SOLSTICE - Programme Fonds Européen de Developpment Régional (FEDER)/Ministère de l’Economie of the G. D. of Luxembourg
Disponible sur ORBilu :
depuis le 03 juillet 2021

Statistiques


Nombre de vues
258 (dont 38 Unilu)
Nombre de téléchargements
29 (dont 3 Unilu)

citations Scopus®
 
34
citations Scopus®
sans auto-citations
23
OpenCitations
 
7
citations OpenAlex
 
35

Bibliographie


Publications similaires



Contacter ORBilu