Article (Périodiques scientifiques)
Actor‑critic learning‑based energy optimization for UAV access and backhaul networks
YUAN, Yaxiong; LEI, Lei; VU, Thang Xuan et al.
2021In EURASIP Journal on Wireless Communications and Networking
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
(EURASIP) Actor‑critic learning‑based energy optimization for UAV access and backhaul networks.pdf
Postprint Éditeur (3.51 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
UAV; Deep reinforcement learning; User scheduling; Backhaul power allocation; Energy optimization; Actor-critic
Résumé :
[en] In unmanned aerial vehicle (UAV)-assisted networks, UAV acts as an aerial base station which acquires the requested data via backhaul link and then serves ground users (GUs) through an access network. In this paper, we investigate an energy minimization problem with a limited power supply for both backhaul and access links. The difficul- ties for solving such a non-convex and combinatorial problem lie at the high compu- tational complexity/time. In solution development, we consider the approaches from both actor-critic deep reinforcement learning (AC-DRL) and optimization perspectives. First, two offline non-learning algorithms, i.e., an optimal and a heuristic algorithms, based on piecewise linear approximation and relaxation are developed as benchmarks. Second, toward real-time decision-making, we improve the conventional AC-DRL and propose two learning schemes: AC-based user group scheduling and backhaul power allocation (ACGP), and joint AC-based user group scheduling and optimization-based backhaul power allocation (ACGOP). Numerical results show that the computation time of both ACGP and ACGOP is reduced tenfold to hundredfold compared to the offline approaches, and ACGOP is better than ACGP in energy savings. The results also verify the superiority of proposed learning solutions in terms of guaranteeing the feasibility and minimizing the system energy compared to the conventional AC-DRL.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SIGCOM
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
YUAN, Yaxiong ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
LEI, Lei ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
VU, Thang Xuan  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
CHATZINOTAS, Symeon  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Sun, Sumei;  Institute for Infocomm Research, Agency for Science, Technology, and Research, Singapore
OTTERSTEN, Björn  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Actor‑critic learning‑based energy optimization for UAV access and backhaul networks
Date de publication/diffusion :
07 avril 2021
Titre du périodique :
EURASIP Journal on Wireless Communications and Networking
ISSN :
1687-1472
eISSN :
1687-1499
Maison d'édition :
Springer, Allemagne
Peer reviewed :
Peer reviewed vérifié par ORBi
Projet FnR :
FNR12173206 - Learning-assisted Optimization For Resource And Security Management In Slicing-based 5g Networks - LARGOS, 2017 (15/03/2018-14/03/2022) - Srikanth Bommaraven
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 31 mai 2021

Statistiques


Nombre de vues
269 (dont 31 Unilu)
Nombre de téléchargements
80 (dont 11 Unilu)

citations Scopus®
 
5
citations Scopus®
sans auto-citations
4
OpenCitations
 
3
citations OpenAlex
 
6
citations WoS
 
6

Bibliographie


Publications similaires



Contacter ORBilu