Pas de texte intégral
Article (Périodiques scientifiques)
Connectivity independent protein-structure alignment: a hierarchical approach.
Kolbeck, Bjoern; MAY, Patrick; Schmidt-Goenner, Tobias et al.
2006In BMC Bioinformatics, 7, p. 510
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Aucun document disponible.

Envoyer vers



Détails



Mots-clés :
Algorithms; Amino Acid Motifs; Computational Biology; Computer Graphics; Databases, Genetic; Models, Molecular; Protein Conformation; Protein Folding; Protein Structure, Tertiary; Proteins/chemistry/genetics; Reproducibility of Results; Sequence Alignment; Sequence Analysis, Protein/methods; Software
Résumé :
[en] BACKGROUND: Protein-structure alignment is a fundamental tool to study protein function, evolution and model building. In the last decade several methods for structure alignment were introduced, but most of them ignore that structurally similar proteins can share the same spatial arrangement of secondary structure elements (SSE) but differ in the underlying polypeptide chain connectivity (non-sequential SSE connectivity). RESULTS: We perform protein-structure alignment using a two-level hierarchical approach implemented in the program GANGSTA. On the first level, pair contacts and relative orientations between SSEs (i.e. alpha-helices and beta-strands) are maximized with a genetic algorithm (GA). On the second level residue pair contacts from the best SSE alignments are optimized. We have tested the method on visually optimized structure alignments of protein pairs (pairwise mode) and for database scans. For a given protein structure, our method is able to detect significant structural similarity of functionally important folds with non-sequential SSE connectivity. The performance for structure alignments with strictly sequential SSE connectivity is comparable to that of other structure alignment methods. CONCLUSION: As demonstrated for several applications, GANGSTA finds meaningful protein-structure alignments independent of the SSE connectivity. GANGSTA is able to detect structural similarity of protein folds that are assigned to different superfamilies but nevertheless possess similar structures and perform related functions, even if these proteins differ in SSE connectivity.
Disciplines :
Biochimie, biophysique & biologie moléculaire
Auteur, co-auteur :
Kolbeck, Bjoern 
MAY, Patrick   ;  Zuse Institute Berlin - ZIB > Computer Science Research
Schmidt-Goenner, Tobias
Steinke, Thomas
Knapp, Ernst-Walter
 Ces auteurs ont contribué de façon équivalente à la publication.
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Connectivity independent protein-structure alignment: a hierarchical approach.
Date de publication/diffusion :
2006
Titre du périodique :
BMC Bioinformatics
eISSN :
1471-2105
Maison d'édition :
BioMed Central, Royaume-Uni
Volume/Tome :
7
Pagination :
510
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBilu :
depuis le 23 avril 2013

Statistiques


Nombre de vues
120 (dont 1 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
46
citations Scopus®
sans auto-citations
41
OpenCitations
 
42
citations OpenAlex
 
55
citations WoS
 
42

Bibliographie


Publications similaires



Contacter ORBilu