Article (Périodiques scientifiques)
Supporting DNN Safety Analysis and Retraining through Heatmap-based Unsupervised Learning
FAHMY, Hazem; PASTORE, Fabrizio; Bagherzadeh, Mojtaba et al.
2021In IEEE Transactions on Reliability, 70 (4), p. 1641-1657
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
HUDD.pdf
Postprint Auteur (1.82 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
DNN Explanation; DNN Functional Safety Analysis; Debugging; Heatmaps; AI
Résumé :
[en] Deep neural networks (DNNs) are increasingly im- portant in safety-critical systems, for example in their perception layer to analyze images. Unfortunately, there is a lack of methods to ensure the functional safety of DNN-based components. We observe three major challenges with existing practices regarding DNNs in safety-critical systems: (1) scenarios that are underrepresented in the test set may lead to serious safety violation risks, but may, however, remain unnoticed; (2) char- acterizing such high-risk scenarios is critical for safety analysis; (3) retraining DNNs to address these risks is poorly supported when causes of violations are difficult to determine. To address these problems in the context of DNNs analyzing images, we propose HUDD, an approach that automatically supports the identification of root causes for DNN errors. HUDD identifies root causes by applying a clustering algorithm to heatmaps capturing the relevance of every DNN neuron on the DNN outcome. Also, HUDD retrains DNNs with images that are automatically selected based on their relatedness to the identified image clusters. We evaluated HUDD with DNNs from the automotive domain. HUDD was able to identify all the distinct root causes of DNN errors, thus supporting safety analysis. Also, our retraining approach has shown to be more effective at improving DNN accuracy than existing approaches.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Software Verification and Validation Lab (SVV Lab)
ULHPC - University of Luxembourg: High Performance Computing
Disciplines :
Sciences informatiques
Auteur, co-auteur :
FAHMY, Hazem ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
PASTORE, Fabrizio  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
Bagherzadeh, Mojtaba;  University of Ottawa
BRIAND, Lionel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Supporting DNN Safety Analysis and Retraining through Heatmap-based Unsupervised Learning
Date de publication/diffusion :
mai 2021
Titre du périodique :
IEEE Transactions on Reliability
eISSN :
0018-9529
Maison d'édition :
Institute of Electrical and Electronics Engineers, New-York, Etats-Unis - New York
Titre particulier du numéro :
Special Section on Quality Assurance of Machine Learning Systems
Volume/Tome :
70
Fascicule/Saison :
4
Pagination :
1641-1657
Peer reviewed :
Peer reviewed vérifié par ORBi
Projet européen :
H2020 - 694277 - TUNE - Testing the Untestable: Model Testing of Complex Software-Intensive Systems
Projet FnR :
FNR14711346 - Functional Safety For Autonomous Systems, 2020 (01/08/2020-31/07/2023) - Fabrizio Pastore
Intitulé du projet de recherche :
BRIDGES2020/IS/14711346/FUNTASY
Organisme subsidiant :
CE - Commission Européenne
European Union
Disponible sur ORBilu :
depuis le 19 avril 2021

Statistiques


Nombre de vues
469 (dont 70 Unilu)
Nombre de téléchargements
188 (dont 21 Unilu)

citations Scopus®
 
29
citations Scopus®
sans auto-citations
19
OpenCitations
 
12
citations OpenAlex
 
31
citations WoS
 
26

Bibliographie


Publications similaires



Contacter ORBilu