[en] The failure hyperelastic structural sealant joints is a fracture mechanics problem. Its modeling requires knowledge of the material property fracture toughness. The present work describes a methodology for determining the mode I bulk material fracture toughness of structural silicone sealants. The concept is demonstrated using DOWSIL™ 993 as an example. In total we manufactured, tested and evaluated 13 DCB specimens of 6mm and 12mm adhesive thickness. The fracture toughness is identified from J-integral measurements. The theory for determining the J-integral at finite deformations is laid out and an automated data analysis procedure
is suggested. The presented approach further allows...
Disciplines :
Civil engineering
Author, co-author :
Rosendahl, P. L.
Staudt, Y.
ODENBREIT, Christoph ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
SCHNEIDER, Jochen ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
BECKER, Werner ; University of Luxembourg > Faculty of Language and Literature, Humanities, Arts and Education (FLSHASE)
External co-authors :
yes
Language :
English
Title :
Measuring mode I fracture properties of thick-layered structural silicone sealants. (LAJ19.G)
Rosendahl PL, Staudt Y, Odenbreit C, Schneider J, Becker W. Silicone selants: A finite fracture mechanics model for nonlinear materials. In: Proceedings of the 14th International Conference on Fracture, Rhodes, Greece, 2017.
Rosendahl PL, Drass M, Felger J, Schneider J, Becker W. Equivalent strain failure criterion for multiaxially loaded incompressible hyperelastic elastomers, Int J Solids and Struct 〈 https://doi.org/10.1016/j.ijsolstr.2019.01.030〉.
Irwin, G.R., Kies, J.A., Critical energy rate analysis of fracture strength. Weld J 33 (1954), 193–198.
Hashemi, S., Kinloch, A.J., Williams, J.G., The analysis of interlaminar fracture in uniaxial fibre-polymer composites. Proc R Soc A: Math Phys Eng Sci 427:1872 (1990), 173–199.
Blackman, B., Dear, J.P., Kinloch, A.J., Osiyemi, S., The calculation of adhesive fracture energies from double-cantilever beam test specimens. J Mater Sci Lett 10:5 (1991), 253–256.
Marzi, S., Hesebeck, O., Brede, M., Kleiner, F., A rate-dependent cohesive zone model for adhesively bonded joints loaded in mode I. J Adhes Sci Technol 23:6 (2009), 881–898.
Blackman, B.R.K., Kinloch, A.J., Paraschi, M., Teo, W.S., Measuring the mode I adhesive fracture energy, GIC, of structural adhesive joints: the results of an international round-robin. Int J Adhes Adhes 23:4 (2003), 293–305.
Khayer Dastjerdi, A., Tan, E., Barthelat, F., Direct measurement of the cohesive law of adhesives using a rigid double cantilever beam technique. Exp Mech 53:9 (2013), 1763–1772.
Eshelby, J.D., Energy Relations and the Energy-Momentum Tensor in Continuum Mechanics. Ball, J.M, Kinderlehrer, D., Podio-Guidugli, P., Slemrod, M., (eds.) Fundamental contributions to the continuum theory of evolving phase interfaces in solids, 1999, Springer Berlin Heidelberg, Berlin, Heidelberg, 82–119 [ISBN 978-3-642-64188-6].
Li, V.C., Ward, R.J., A novel testing technique for post-peak tensile behaviour of cementitious materials. Mihashi, H., Takahashi, H., Wittmann, F., (eds.) Fracture toughness and fracture energy, 1989, CRC Press, 183–195 [ISBN 978-9061919889].
Sørensen, B.F., Cohesive law and notch sensitivity of adhesive joints. Acta Mater 50:5 (2002), 1053–1061.
Andersson, T., Stigh, U., The stress-elongation relation for an adhesive layer loaded in peel using equilibrium of energetic forces. Int J Solids Struct 41:2 (2004), 413–434.
Andersson, T., Biel, A., On the effective constitutive properties of a thin adhesive layer loaded in peel. Int J Fract 141:1–2 (2006), 227–246.
Marzi, S., Rauh, A., Hinterhölzl, R.M., Fracture mechanical investigations and cohesive zone failure modelling on automotive composites. Compos Struct 111:1 (2014), 324–331.
Biel, A., Stigh, U., Cohesive zone modelling of nucleation, growth and coalesce of cavities. Int J Fract 204:2 (2017), 159–174.
Marzi, S., Biel, A., Stigh, U., On experimental methods to investigate the effect of layer thickness on the fracture behavior of adhesively bonded joints. Int J Adhes Adhes 31:8 (2011), 840–850.
Banea, M.D., da Silva, L.F.M., Campilho, R.D.S.G., Temperature dependence of the fracture toughness of adhesively bonded joints. J Adhes Sci Technol 24:11–12 (2010), 2011–2026.
Schmandt, C., Marzi, S., Effect of crack opening velocity and adhesive layer thickness on the fracture behaviour of hyperelastic adhesive joints subjected to mode I loading. Int J Adhes Adhes 83 (2018), 9–14.
Loh, L., Marzi, S., An Out-of-plane Loaded Double Cantilever Beam (ODCB) test to measure the critical energy release rate in mode III of adhesive joints. Int J Adhes Adhes 83:March (2018), 24–30.
Loh, L., Marzi, S., Mixed-mode I+III tests on hyperelastic adhesive joints at prescribed mode-mixity. Int J Adhes Adhes 85 (2018), 113–122.
Banea, M.D., da Silva, L.F.M., Campilho, R.D.S.G., The effect of adhesive thickness on the mechanical behavior of a structural polyurethane adhesive. J Adhes 91:5 (2015), 331–346.
Campilho, R.D.S.G., Moura, D.C., Banea, M.D., da Silva, L.F.M., Adhesive thickness effects of a ductile adhesive by optical measurement techniques. Int J Adhes Adhes 57 (2015), 125–132.
Paris, A.J., Paris, P.C., Instantaneous evaluation of J and C*. Int J Fract 38:1 (1988), R19–R21.
Olsson, P., Stigh, U., On the determination of the constitutive properties of thin interphase layers - An exact inverse solution. Int J Fract 41:4 (1989), R71–R76.
Nilsson, F., A tentative method for determination of cohesive zone properties in soft materials. Int J Fract 136:1–4 (2005), 133–142.
Ortiz, M., Pandolfi, A., Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng 44:9 (1999), 1267–1282.
Gasser, T.C., Holzapfel, G.A., Modeling 3D crack propagation in unreinforced concrete using PUFEM. Comput Methods Appl Mech Eng 194:25-26 (2005), 2859–2896.
Budzik, M., Jumel, J., Imielińska, K., Shanahan, M.E.R., Effect of adhesive compliance in the assessment of soft adhesives with the wedge test. J Adhes Sci Technol 25:1–3 (2011), 131–149.
Jumel, J., Ben Salem, N., Budzik, M.K., Shanahan, M.E.R., Measurement of interface cohesive stresses and strains evolutions with combined mixed mode crack propagation test and Backface Strain Monitoring measurements. Int J Solids Struct 52 (2015), 33–44.
Cabello, M., Zurbitu, J., Renart, J., Turon, A., Martínez, F., A non-linear hyperelastic foundation beam theory model for double cantilever beam tests with thick flexible adhesive. Int J Solids Struct 80 (2016), 19–27.
Staudt, Y., Proposal of a failure criterion of adhesively bondedconnections with silicone [Dissertation], 2017, University of Luxembourg [http://hdl.handle.net/10993/34392].
Staudt, Y., Odenbreit, C., Schneider, J., Failure behaviour of silicone adhesive in bonded connections with simple geometry. Int J Adhes Adhes 82 (2018), 126–138.
Carlberger, T., Stigh, U., Influence of layer thickness on cohesive properties of an epoxy-based adhesive-an experimental study. J Adhes 86:8 (2010), 816–835.
Staudt Y, Schneider J, Odenbreit C. Investigation of the material behaviour of bonded connections with silicone. in: engineered tranparency. International Conference at glasstec, Düsseldorf, 2014.
Parks, D.M., The virtual crack extension method for nonlinear material behavior. Comput Methods Appl Mech Eng 12:3 (1977), 353–364.
Shih, C.F., Moran, B., Nakamura, T., Energy release rate along a three-dimensional crack front in a thermally stressed body. Int J Fract 30:2 (1986), 79–102.
Drass, M., Schwind, G., Schneider, J., Kolling, S., Adhesive connections in glass structures-part I: experiments and analytics on thin structural silicone. Glass Struct Eng 3:1 (2018), 39–54.