Article (Scientific journals)
Burden of rare variants in synaptic genes in patients with severe tinnitus: An exome based extreme phenotype study
Amanat, Sana; Gallego-Martinez, Alvaro; Sollini, Joseph et al.
2021In EBioMedicine, 66 (103309)
Peer Reviewed verified by ORBi
 

Files


Full Text
Amanat2021.Ebiomed.pdf
Publisher postprint (1.33 MB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Tinnitus; Extreme phenotype; Axon initial segment; exome sequencing
Abstract :
[en] Background: tinnitus is a heterogeneous condition associated with audio logical and/or mental disorders. Chronic, severe tinnitus is reported in 1% of the population and it shows a relevant heritability, according to twins, adoptees and familial aggregation studies. The genetic contribution to severe tinnitus is unknown since large genomic studies include individuals with self-reported tinnitus and large heterogeneity in the phenotype. The aim of this study was to identify genes for severe tinnitus in patients with extreme phenotype. Methods: for this extreme phenotype study, we used three different cohorts with European ancestry (Spanish with Meniere disease (MD), Swedish tinnitus and European generalized epilepsy). In addition, four independent control datasets were also used for comparisons. Whole-exome sequencing was performed for the MD and epilepsy cohorts and whole-genome sequencing was carried out in Swedish with tinnitus. Findings: we found an enrichment of rare missense variants in 24 synaptic genes in a Spanish cohort, the most significant being PRUNE2, AKAP9, SORBS1, ITGAX, ANK2, KIF20B and TSC2 (p < 2E−04), when they were compared with reference datasets. This burden was replicated for ANK2 gene in a Swedish cohort with 97 tinnitus individuals, and in a subset of 34 Swedish patients with severe tinnitus for ANK2, AKAP9 and TSC2 genes (p < 2E−02). However, these associations were not significant in a third cohort of 701 generalized epilepsy individuals without tinnitus. Gene ontology (GO) and gene-set enrichment analyses revealed several pathways and biological processes involved in severe tinnitus, including membrane trafficking and cytoskeletal protein binding in neurons. Interpretation: a burden of rare variants in ANK2, AKAP9 and TSC2 is associated with severe tinnitus. ANK2, encodes a cytoskeleton scaffolding protein that coordinates the assembly of several proteins, drives axonal branching and influences connectivity in neurons.
Research center :
- Luxembourg Centre for Systems Biomedicine (LCSB): Bioinformatics Core (R. Schneider Group)
Disciplines :
Genetics & genetic processes
Author, co-author :
Amanat, Sana
Gallego-Martinez, Alvaro
Sollini, Joseph
Perez-Carpena, Patricia
Espinosa-Sanchez, Juan M.
Aran, Ismael
Soto-Varela, Andres
Batuecas-Caletrio, Angel
Canlon, Barbara
May, Patrick  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
Cederroth, Christopher R.
Lopez-Escamez, Jose A.
External co-authors :
yes
Language :
English
Title :
Burden of rare variants in synaptic genes in patients with severe tinnitus: An exome based extreme phenotype study
Publication date :
April 2021
Journal title :
EBioMedicine
ISSN :
2352-3964
Publisher :
Elsevier, Amsterdam, Netherlands
Volume :
66
Issue :
103309
Peer reviewed :
Peer Reviewed verified by ORBi
Focus Area :
Systems Biomedicine
FnR Project :
FNR11583046 - Epileptogenesis Of Genetic Epilepsies, 2017 (01/04/2018-30/06/2021) - Roland Krause
Funders :
FNR - Fonds National de la Recherche [LU]
Available on ORBilu :
since 02 April 2021

Statistics


Number of views
139 (0 by Unilu)
Number of downloads
64 (0 by Unilu)

Scopus citations®
 
26
Scopus citations®
without self-citations
16
OpenCitations
 
16
WoS citations
 
25

Bibliography


Similar publications



Contact ORBilu