Article (Périodiques scientifiques)
Degree Adjusted Large-Scale Network Analysis Reveals Novel Putative Metabolic Disease Genes.
BADKAS, Apurva; NGUYEN, Thanh-Phuong; Caberlotto, Laura et al.
2021In Biology, 10 (2)
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
biology-10-00107-v3.pdf
Postprint Éditeur (2.74 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
co-morbidities; metabolic disease genes; metabolic diseases; networks; topology
Résumé :
[en] A large percentage of the global population is currently afflicted by metabolic diseases (MD), and the incidence is likely to double in the next decades. MD associated co-morbidities such as non-alcoholic fatty liver disease (NAFLD) and cardiomyopathy contribute significantly to impaired health. MD are complex, polygenic, with many genes involved in its aetiology. A popular approach to investigate genetic contributions to disease aetiology is biological network analysis. However, data dependence introduces a bias (noise, false positives, over-publication) in the outcome. While several approaches have been proposed to overcome these biases, many of them have constraints, including data integration issues, dependence on arbitrary parameters, database dependent outcomes, and computational complexity. Network topology is also a critical factor affecting the outcomes. Here, we propose a simple, parameter-free method, that takes into account database dependence and network topology, to identify central genes in the MD network. Among them, we infer novel candidates that have not yet been annotated as MD genes and show their relevance by highlighting their differential expression in public datasets and carefully examining the literature. The method contributes to uncovering connections in the MD mechanisms and highlights several candidates for in-depth study of their contribution to MD and its co-morbidities.
Centre de recherche :
ULHPC - University of Luxembourg: High Performance Computing
Disciplines :
Sciences du vivant: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
BADKAS, Apurva ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
NGUYEN, Thanh-Phuong ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Life Science Research Unit
Caberlotto, Laura
SCHNEIDER, Jochen ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Medical Translational Research
DE LANDTSHEER, Sébastien ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
SAUTER, Thomas ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Degree Adjusted Large-Scale Network Analysis Reveals Novel Putative Metabolic Disease Genes.
Date de publication/diffusion :
2021
Titre du périodique :
Biology
eISSN :
2079-7737
Maison d'édition :
Multidisciplinary Digital Publishing Institute (MDPI), Suisse
Volume/Tome :
10
Fascicule/Saison :
2
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Systems Biomedicine
Projet FnR :
FNR9139104 - An Integrative Systems Medicine Approach To Mapping Human Metabolic Diseases, 2014 (01/07/2015-31/03/2017) - Thanh Phuong Nguyen
Disponible sur ORBilu :
depuis le 18 mars 2021

Statistiques


Nombre de vues
402 (dont 34 Unilu)
Nombre de téléchargements
191 (dont 11 Unilu)

citations Scopus®
 
2
citations Scopus®
sans auto-citations
1
OpenCitations
 
2
citations OpenAlex
 
2
citations WoS
 
2

Bibliographie


Publications similaires



Contacter ORBilu